

Case study on German tertiary and paleozoic rocks

Christoph Clauser

Institute for Applied Geophysics and Geothermal Energy E.ON Energy Research Center, RWTH Aachen University www.eonerc.rwth-aachen.de/gge

all that he wanted

Renate Pechnig

Geophysica Beratungsgesellschaft, Aachen

E RWTH

Motivation

Use of available data:

Borehole data and **core samples** from the archives of industry and the state geological surveys,

in particular from exploration wells for:

- hydrocarbons
- lignite
- hard coal
- general research boreholes

Core archive of the State Geological Survey of NRW near Krefeld.

Example of scanning measurement of thermal conductivity λ and sonic velocity v_p (interbedded dolomite - anhydrite).

- + direct measurements
- selective, not representative

Example borehole data

- + spatial coverage of geologic units
- + complete vertical profiles

Data base: general approach

- 1. Correlate rock components and their specific log responses (provided)
- 2. Calculate volume fractions of rock components from borehole logs
- 3. Calculate bulk thermal conductivity from appropriate mixing laws

Statistical parameters of representative rock types and geologic units

Example : Histogram of water saturated thermal conductivity λ_s of a geologic unit (Upper Devonian Limestone in the Lower Rhine Basin)

Example : Box-Whisker-diagrams of porosity of main rock types in South-Western Germany (Molasse Basin). *: mean; _: median; box: 25 and 75 percentile; |-----|: min-max range.

Core scanning (thermal Conductivity)

Optical scanning: range: 0.2 W m⁻¹ K⁻¹ – 25 W m⁻¹ K⁻¹ accuracy: \pm 3 %

up to 60 samples per hour

UNIVERSITY

Data base: thermal conductivity scanning

Sample with paint and markings

Sensors with heat source

Measuring arrangement on TCS: standard – sample – standard of comparison - standard

Finished core sample with two scan lines

Conventional input data

- Wide range of tabulated data values: large uncertainty for predicted energy production
- Conservative estimates of rock properties: deeper boreholes than necessary
- Cost reduction possible if rock properties were known more accurately and with specified precision

Range of thermal conductivity (min-max) for various rock types (Čermak & Rybach, 1982).

Data base: thermal conductivity of sandstones

Data base: thermal conductivity of sandstones

- Saturated thermal conductivity vs. quartz content (left)
- Dry thermal conductivity vs. porosity (right)

E.ON Energy Research Center

$$---- \lambda_{Asaad}(\phi) = \lambda_{matrix}^{(1-f\phi)} \cdot \lambda_{air}^{f\phi}$$

• λ as a function of burial depth (pressure and temperature)

Variation of sandstone thermal conductivity with p and T (left)

and normalized to ambient p-T conditions (right)

Data base: specific heat capacity testing

Data base: specific heat capacity

Case study on tertiary and paleozoic rocks

- Measurements on core samples:
 - Thermal Conductivity
 - Specific Heat Capacity
 - P-Wave Velocity
 - Bulk and Matrix Density
 - Gamma Density
 - Porosity by different methods
 - NMR for Porosity/Permeability
 - By third party:
 - He-Permeability
 - XRF and XRD
 - Mercury Injection

- Log Analysis:
 - Formation Evaluation
 - Lithology, Clay Volume
 - Porosity
 - Core-Log Integration
 - Thermal Conductivity Profiles
- Measurements on core samples
 - Spectral Gamma (K, Th, U)
- By third party (Prof. Popov, Moscow)
 - P-T dependend thermal conductivity and diffusivity

Study area and boreholes

Exploration and research wells: Tertiary sediments and paleozoic basement

Thermal conductivity on cottings

Thermal conductivity on cuttings: TK04 half-space line source

Laboratory measurements

- Thermal conductivity measured on 50 cutting samples
 - saturated rock-water mixture
 - result: rock matrix conductivity from appropriate mixing law:

(a)
$$\lambda_{\max} = \lambda_{ari} = \lambda_{\parallel} = \sum_{i=1}^{N} n_i \lambda_i$$
;
(b) $\lambda_{\min} = \lambda_{har} = \lambda_{\perp} = \left(\sum_{i=1}^{N} \frac{n_i}{\lambda_i}\right)^{-1}$;
(c) $\lambda_{mean} = \frac{1}{2} \left(\lambda_{\parallel} + \lambda_{\perp}\right)$;
(d) $\lambda_{geo} = \prod_{i=1}^{N} \lambda_i^{ni}$;
(e) $\sqrt{\lambda_{sqr}} = \sum_{i=1}^{N} n_i \sqrt{\lambda_i}$;
(f) $\left(\frac{1}{\lambda}\right)_{eff} = \sum_{i=1}^{N} \frac{3n_i}{2\lambda + \lambda_i}$;
(g) $\lambda_{HS} = \frac{1}{2} \left(\lambda_{HS}^{U} + \lambda_{HS}^{L}\right)$;

- 740 m borehole penetrating the complete sequence of unconsolidated tertiary sediments
- Samples: Sands snd clays

E.ON Energy Research Center

Petrophysics - Tertiary sediments

Statistical moments

Listed in tables and histrograms For the main rock types

		Ν	Mittel- wert	Stabw.	Min.	25%- Quart.	Median	75%- Quart.	Max.
λ_{f} (W m ⁻¹ K ⁻¹)	Ton	72	1,88	0,33	1,28	1,64	1,81	2,06	2,96
	Schluff	15	2,25	0,20	1,86	2,19	2,24	2,41	2,61
	Sand	Gesamt: 123	2,76	0,33	1,82	2,53	2,86	2,99	3,50
		<245 m: 27 >245 m: 96	2,39 2,86	0,24 0,27	1,82 2,07	2,30 2,80	2,36 2,90	2,52 3,02	2,82 3,50
	Braunkohle	3	0,70	0,05	0,66				0,75
ρ _m (kg m ⁻³)	Ton	RWTH: 25 RWE: 28	2668 2613	122 61	2360 2420	2642 2590	2655 2620	2682 2640	3092 2750
		Gesamt: 53	2639	98	2360	2610	2640	2663	3092
	Schluff	19	2666	49	2547	2645	2680	2697	2759
	Ton/Schluff	72	2646	88	2360	2620	2645	2682	3092
	Sand	139	2640	29	2368	2634	2645	2650	2694
	Braunkohle	4	1428	16	1412				1451
Ф (-)	Ton	49	0,337	0,054	0,219	0,300	0,330	0,378	0,430
	Schluff	19	0,331	0,048	0,270	0,300	0,316	0,353	0,430
	Ton/Schluff	68	0,335	0,052	0,219	0,300	0,322	0,372	0,430
	Sand	RWTH: 117 RWE: 19 Gesamt: 136	0,409 0,361 0,403	0,027 0,049 0.035	0,285 0,250 0,250	0,393 0,340 0,390	0,412 0,360 0,406	0,425 0,395 0.425	0,467 0,430 0,467
	Braunkohle	n.b.		.,		-,	-,		.,

22

Core-Log Integration

Logs - Tertiary

- Result of log interpretation
 - Porosity from density log
 - Saturation from resistivity logs
 - Lithology from GR

 - Matrix values from laboratory testing

Correlation

stratigraphic unit and information on verticalen and lateral variation.

Devon

1000

Drilling Locations, Paleozoic rocks

Exploration wells: Tertiary sediments and paleozoic basement rocks

Rock samples from RWTH-1

Thermal conductivity – density

Variation of thermal conductivity with depth

E.ON Energy Research Center

Variation of pysical properties with depth

- v_p and resistivity trends are controlled by rock composition
- entire rock column is massive
- rock porosity is low

- Strong scatter of thorium and potassium in shales and siltstone
- Calculation of shale volume separatly for each zone

Calculated thermal conductivity

- Thermal Conductivity from shale and matrix values.
- of shale volume calculated separately for each zone
- Due to rock composition (carbonaceous, siliciclastic) matrix values for thermal conductivity differ from zone to zone.

Borehole Locations, Paleozoic rocks

Exploration wells: Tertiary sediments and paleozoic basement rocks

Rock Samples - Stratigraphy

Series	Stage	Substage	B-01	B-02	B-03	B-04	B-05	B-06	B-07	B-08	B-09	B-10	B-11	B-12	B-13	B-14	B-15	B-16	B-17	B-18	Total		
Stefanian Stefanian Leo Westfalian		Stefanian C																					
	Stefanian	Stefanian B																			0		
	Stefanian A																						
	Westfalian D																						
	Westfalian C													7									
				14 3											20								
															7								
	Westfalian	Westfalian B			14 3															95			
	vvcstranari	Trootidiidii B												1	3			8	00				
		Westfalian A																	21	1	1 1		
ddr																			2.	'			
Namurian																							
		Namurian C																	11			\square	
	Namurian	Namurian B						28													39		
	Namurian A																						
Carboni- Carboni- ferous Lournaisian		3						11					2								16		
		Ĵ																		10			
Famenr Ado A A Frasniar		Dasberg																					
	Famennian	Hemberg								9			2	3							34		
		Nehden										7	1			3							
	Frasnian	Adorf							6		9												
Birdide Middle Devonian Eifelian	Givetian						3		20		1	15									44		
	Eifelian					5															44		
Lower Devonian	Emsian																						
	Pragian																				0		
	Lochkovian																				1		

231 samples from 18 wells, covering different stratigraphic units of Devonian and Carboniferous age

Rock Samples – Examples

Upper Carbonifereous (sampling supported by NRW Geological Survey, Krefeld)

Thermal conductivity vs. porosity

Cross-plot of thermal conductivity (dry samples) and rock porosity shows large scatter, in particular for the paleozoic sandstones

Thermal conductivity vs. porosity

- Relationship depends strongly on rock matrix conductivity (numbers)
- sandstones with similar rock matrix are well described by the geometric law.

Thermal conductivity vs. rock type and mineral content

Beratungsgesellschaft mbH

Figure 5: Mineralogical composition of four samples from borehole B-09 (Frasnian shale with varying lime and silt content).

Figure 6: Comparison between calculated and measured thermal conductivity of nine water saturated samples from borehole B-09.

Koch et al. 2009

Logs of Upper Carbonifereous Strata

Composite log of a coal mining exploration well

Westfalian (Bochum formation)

Coal beds: low density, low velocity and high resisitiviy

Coal Bed Responses

Typical log responses of coal beds (black) interlayered with sandstones (yellow), siltstones (greyish) and claystones (brown).

Log Analysis - Lithology

Core and Log Data

Comparison of core and log bulk density and core and log v_p velocity.

Porosity Log

Porosity from density log

Matrix Density Sandstone:

2700 kg/m³

Thermal conductivity profiles

λ_m Shale 2.4 W/(m K)

λ_m Coal 0.7 W/(m K)

3 $k = 6,2 \phi + 1493 \phi^2 + 630 (10 \phi)^{10}$ Toniger Sandstein

 $(10 \phi)^{10}$ Tonstein 4 $k = 0, 1 \phi + 26 \phi^2 +$

(k in 10⁻⁹ m²)

Thank you for your attention!

Thermal conductivity - dependence on p and T

