Scientific and technological integration in geothermal exploration:

Christoph Clauser, Christian Vogt

Institute for Applied Geophysics and Geothermal Energy E.ON Energy Research Center, RWTH Aachen University www.eonerc.rwth-aachen.de/gge

Renate Pechnig, Darius Mottaghi Geophysica Beratungsgesellschaft, Aachen

www.geophysica.com

EE RWTH

System
 ■ Heating for 6000 houses in the "Den Haag Zuidwest" district

Background

Investors: Eneco Energy, E.ON Benelux, City of Den Haag and three housing companies: Vestia, Staedion, Haagwonen

Deep Geothermal Installation - Doublet

- Requirements for geothermal doublet:
 - = Thermal power: ~ $5MW_{th}$
 - Well depth: ~ 2200 m, deep reservoirs: Rijswijk and Delft sands
 - Production temperature: ~ 75°C
 - Flow rate: ~ 150 m³/h

Geological Setting

West-Netherlands Basin

- Late Jurassic/Early Cretaceous basin system.
- Rifting formed half graben systems, filled with fluviatile sediments. Rijswijk, Berkel, & Delft sandstones: prominent reservoir rocks.
- basin inverted during late Cretaceous, creating horst and graben structures. Accumulation of oil and gas in anticlines.

Well Locations

- Exploration wells around target region:
 - oil and gas borholes near anticlines
 - ≡ geothermal drill target in syncline, little information.

Seismic data

 Cross section of 3-D seismics with exploration wells HAG-01 and HAG-02 near anticline

- planning a geothermal doublet requires detailed information on geology and thermal regime
 - well known
 - = geology and structures from oil and gas exploration seismics and drilling
 - less well known
 - = temperature field only from sparse BHT data
- task: fill in missing and integrate existing information into 3-D static and dynamic reservoir models for predicting
 - steady-state temperature at reservoir depth making allowance for structural and geological heterogeneity of the subsurface
 - transient variation of production temperature during operation period

- Asses steady-state thermal regime
 - acquire and compile basic data sets
 - Measure thermal property on drill cuttings (for lack of core) in the laboratory
 - integrate borehole logs and laboratory data for predicting thermophysical properties of stratigraphic units
 - \equiv set up and test static 3-D numerical model (25 km \times 25 km \times 5 km)
 - perform predictive simulations

Key Well Selection

	Boring	Yr Analogue		Digital				Coredata		
			SP	res	gr	dt	rhob	nphi	Res	
	BRK-03	1955								
	DEL-08	1994			gr	dt	rhob	nphi	Res	
	HAG-01	1954	SP	Res						KNNSR
•	HAG-02	1955	SP	Res						KNNSR
	KDZ-02	1986			gr	dt	rhob	nphi	Res	
,	LED-01	1956								KNNSR
	LIR-45	1982			gr	dt	rhob	nphi	Res	KNNSR
	MED-01	1958								KNNSR
•	MON-01	1956								KNNSR
	MON-02	1982			gr	dt	rhob	nphi	Res	KNNSR
,	MON-03	1990			gr	dt	rhob	nphi	Res	
	PNA-02	1955								KNNSR, SLDND
	PNA-03	1955								KNNSR
	PNA-04-S2	1981			gr		rhob	nphi		
	PNA-07	1957								KNNSR
	PNA-10	1957								KNNSR
	PNA-14	1985			gr	dt	rhob	nphi		
	PNA-15	1994			gr		rhob	nphi		
	RTD-01	1984								SLDND
	RWK-01	1953								KNNSR, SLDND
	RWK-02	1953								KNNSR
	RWK-03	1953								KNNSR
	RWK-04	1954								KNNSR
	RWK-05	1954								KNNSR
	RWK-06	1954								KNNSR
	RWK-07	1954								KNNSR
	RWK-08	1955								KNNSR
	RWK-09	1955								KNNSR
	RWK-11	1956								KNNSR
	RWK-14	1956								KNNSR
	RWK-18	1954			gr	dt				
	Q13-07-S2	1990			gr	dt	rhob	nphi	Res	
$ \rightarrow $	Q14-01	1984								KNNSR
	Q16-01	1970			gr	dt			Res	KNNSR
	Q16-02	1978			gr	dt	rhob	nphi	Res	
	WAS-01	1956								KNNSR
	WAS-02	1957								KNNSR
	WAS-05	1957								KNNSR
	WAS-23	1960			gr	dt	rhob	nphi	Res	KNNSR

- lists of wells and availabile logging data and core material.
- cuttings available at repository in Zeist from
 - ≡ Q16-01
 - **⊒ Q16-02**
 - **≡ KDZ-02**
 - **≡** WAS-23
 - MON-02
- little cutting available (< 50 g per bag) from well MON-02

Logs from KDZ-02

Well-to-well correlation

Laboratory measurements

Thermal conductivity on cuttings: TK04 half-space line source

Laboratory measurements

- Thermal conductivity measured on 50 cutting samples
 - ≡ saturated rock-water mixture
 - result: rock matrix conductivity from appropriate mixing law:

(a)
$$\lambda_{\max} = \lambda_{ari} = \lambda_{\parallel} = \sum_{i=1}^{N} n_i \lambda_i$$
;
(b) $\lambda_{\min} = \lambda_{har} = \lambda_{\perp} = \left(\sum_{i=1}^{N} \frac{n_i}{\lambda_i}\right)^{-1}$;
(c) $\lambda_{mean} = \frac{1}{2} \left(\lambda_{\parallel} + \lambda_{\perp}\right)$;
(d) $\lambda_{geo} = \prod_{i=1}^{N} \lambda_i^{ni}$;
(e) $\sqrt{\lambda_{sqr}} = \sum_{i=1}^{N} n_i \sqrt{\lambda_i}$;
(f) $\left(\frac{1}{\lambda}\right)_{eff} = \sum_{i=1}^{N} \frac{3n_i}{2\lambda + \lambda_i}$;
(g) $\lambda_{HS} = \frac{1}{2} \left(\lambda_{HS}^{U} + \lambda_{HS}^{L}\right)$;

Log Analysis

- Determine thermophysical properties for stratigraphic units:
 - Invert volume percentage of rock type from suitable borehole logs
 - Assign representative values for rock and fluid thermal conductivity and porosity
 - Apply suitable mixing law for deriving thermal conductivity log
 - Calibrate with laboratory measurements

Formation thermal conductivity

 $\lambda_{\text{sat}} = \lambda_{\text{fluid}}^{\phi} \lambda_{\text{matrix}}^{(1-\phi)}$

Effective thermal conductivity logs allow calculating statistical moments for characterising the different geological model units

Rock matrix thermal conductivity

 Comparison of thermal conductivity predicted (from logs) vs. measured (in the lab)

Rock matrix thermal conductivity

Gamma ray: well-to-well comparison

Gamma ray: well-to-well comparison

Unit	Bulk Thermal Conductivity (W m ⁻¹ K ⁻¹) Mean–Stdv. Mean Mean+Stdv.	Heat production (µW m ⁻³)
North Sea super-group (N)	2.3	1.05
Upper Cretaceous super-group (CK)	1.80 – 2.20 – 2.60	0.46
Lower Cretaceous super-group (KN)	1.94 – 2.51 – 3.08	0.92
Jurassic super-group (S)	2.75 - 3.75 - 4.57	0.75
Altena Group (AT)	1.81 – 2.17 – 2.53	1.44
Lower Germanic Triassic Group (RB)	1.93 – 2.80 – 3.67	1.61
Permian Zechstein Group (ZE)	1.90 – 3.14 – 4.35	1.33
Rotliegend (RO)	4.0	0.75
Basement (DC)	2.3	2.30

- Static model: 3-D steady-state heat transport
 - \equiv dimensions: 22.5 km \times 24.3 km \times 5 km
 - \equiv Finite Difference grid with ~ 2.4 million nodes
 - 9 Geological units, layer interfaces according to seismic survey (TNO) Ξ
 - Physical properties vary with temperature Ξ
 - \equiv boundary conditions
 - No lateral inflow or outflow
 - = Temperature at surface: 11 °C
 - Specific heat flow at bottom: 65 mW m⁻²
 - Model used to
 - \equiv predict temperature at bottom of production well
 - \equiv asses sensitivity of prediction

Location of 3-D model

Layers in 3-D model

Comparison predicted geotherms vs. regional BHT

RWTHAACHEN UNIVERSITY 24

Horizontal cross section at 1900 m

Temperature at top of reservoir (unit 4)

- Combining laboratory and logging data allows
 - proper assignment of thermal properties for geological units
 - characterization in terms of statistical moments, such as mean, median, standard deviation, etc.
 - Quantifying the uncertainty in model input parameters caused by the variability of rock properties within a geological unit
- In contrast, thermal models based on estimated thermal properties will often result in largely over- or underestimated, unreliable temperature predictions with unspecified uncertainty
- 3-D thermal models may support decision making in drilling design with respect to well path, deviation, drilling length, and target depth
- Result of Den Haag case study:
 - **Predicted** bottom-hole temperature: **76.0** °C
 - Measured bottom-hole temperature: 76.5 °C

- Set up and test transient 3-D reservoir model
- Perform simulations for
 - \equiv the operating doublet system
 - **predicting the transient variation of production temperature**
 - inferring radius of cooling around injector
 - \equiv identifying a potential thermal breakthrough

Location of 3-D model

Reservoir thickness

Model properties

Parameter	Value
Number of nodes	170 560
Extension	5.5 km × 3.5 km × 1.105 km
Porosity	17 %
Permeability	500 mD
Reservoir thickness	55 m
Transmissivity	$2.75 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$
Injection and production rate	150 m ³ h ⁻¹
Temperature of injected water	40 °C
Thermal conductivity matrix Delft	5.6 W m ⁻¹ K ⁻¹ = f(temperature)

Variation	Value
Permeability	100 mD – 1000 mD
Transmissivity	$5.5 \times 10^{-5} \text{ m}^2 \text{ s}^{-1}$ - $5.5 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$

Delft Sandstone petrophysical properties

Porosity – permeability relationship from measurements on core in the laboratory

Temperature (°C) after 100 years

- No thermal breakthrough during 100 years of operation
- Cooling around the injection extends roughly 1 km
- Temperature decrease of ~1.5 K after 50 years of production

- To be kept in mind, however:
 - thickness of reservoir layer only estimated
 - reservoir permeability and porosity assumed homogeneous

Stochastic thermal simulation

- Modeling approach:
 - traditionally, each model unit characterized by one constant value (here: thermal conductivity)
 - \equiv Stochastic simulation takes into account
 - = the probability distribution of physical rock properties parameter from data base)

(input

- its spatial correlation
- and generates a set of realizations, equally likely with respect to the data

Constraining post-processing

Problem: Permeability histogram known, but no information on spatial distribution (i.e. correlation length)

Correlation length study with SGSIM*

3D visualisation for optimizing interpretation

Thank you for your attention!

