The road ahead: the integrated MeProRisk approach:

- RWTH Aachen University
 - Institute for Applied Geophysics and Geothermal Energy
 - Dr. habil. Gabriele Marquart, Dr. Volker Rath, Dr. Samih Zein, Andreas Wolf, Christian Vogt, Christian Kosack
 - Center for Computing and Communication
 - = Institute for Scientific Computing: Prof. Martin Bücker, Dr. Kathrin Fuchss Portela
 - = Virtual Reality Group: Prof. Torsten Kuhlen, Irene Tedjo-Palczynski
 - Chair C for Mathematics
 - = Prof. Michael Herty, Dimitrios Papadopulos
- Freie Univesrität Berlin
 - Prof. Serge Shapiro, Makky Jaya, Anton Reshetnikov, Jannis Tzavaras
- Christian-Albrechts-Universität zu Kiel
 - Prof. Wolfgang Rabbel, Katja Iwanowski-Strahser, Eva Szalaiova
- RWE Dea AG, Hamburg
 - Dr. Hanna Rumpel, Joachim Strobel
- Geophysica Beratungsgesellschaft mbH, Aachen
 - Dr. Renate Pechnig, Dr. Juliane Arnold

- risk and strategies for minimizing risk
- numerical process modeling as pivotal tool
- the MeProRisk approach
- sources for reservoir data
- reservoir simulation and methods for estimating rock properties
- two examples: (i) crystalline basement, (ii) sedimentary basin
- visualizing results of 3-D simulations
- optimal experimental design: finding the best location for an exploration borehole
- summary

- Risks in hydro-geothermal exploration and use:
- Drilling risk (loss of equipment in the borehole, loss of borehole)
- Technological risk (borehole, pumps, power plant)
- Productivity risk (temperature and flow rate $\Diamond T \ge 75 \degree C$, Q $\ge 40 \ L \ s-1$)
- Thermal Power: $P_t = (\rho c)_f Q \Delta T$

Q: Flow rate (m³ s⁻¹); Δ T: Temperature drop (K); (ρ c)_f Fluid thermal capacity (J m⁻³ K⁻¹)

Prediction by numerical reservoir modeling

Work flow in numerical reservoir simulation

- Provide reliable structural model
- Provide data base of rock properties
- Simulate fluid and heat flow (forward) and estimate rock properties (inverse)
- Reduce uncertainty of physical rock properties and thus of productivity and economic risk

MeProRisk cooperation

Reservoir rock properties from inversion of borehole logs

Geophysica GmbH

Integrative statistical petrophysical studies for deriving representative properties for rock types and geological units

- (1) Correlation of rock components and log response
- (2) Calculation of volumetric fractions of rock components from log data
- (3) Calculation of thermal conductivity using appropriate mixing law

Reservoir rock properties from petrophysical analysis

Example of scanning measurement of thermal conductivity λ and sonic velocity vp (interbedded dolomite - anhydrite).

- + direct measurements
- selective, not representative

Example borehole data

- + allows spatial coverage of geologic units
- + completes vertical profile
- possibly large errors

Statistical reservoir rock property data base

Reservoir simulation and prediction

RWTH Aachen University

Reservoir simulation Shape and design optimization Uncertainty analysis

GGE | Applied Geophysics and Geothermal Energy

Fluid flow:
$$\nabla (k \rho_f g / \mu_f) \nabla h + Q = S_s \frac{\partial h}{\partial t}$$

Heat
transport:
$$\nabla(\lambda_e \nabla T) - (\rho c)_f v \nabla T + A = (\rho c)_e \frac{\partial T}{\partial t}$$

Species
transport:
$$\nabla (D \nabla C^k) - v \nabla C^k = \phi \frac{\partial C^k}{\partial t}$$

permeability k [m²] porosity ϕ [-] density (fluid/effective) pf/e [kg m⁻³] fluid dynamic viscosity µf [Pa s] gravity g [m s⁻²] hydraulic head h [m] specific storage coefficient Ss [m⁻¹] source term Q [s⁻¹], A [W m⁻³] temperature T [°C] effective thermal conductivity λ e [W m⁻¹ K⁻¹] concentration C^k [mmol L⁻¹] heat capacity (fluid/effective) cf/e [J kg⁻¹ K⁻¹] specific discharge v [m s⁻¹] dispersion tensor D [m² s]

solved by *SHEMAT-Suite*, an advanced version of *SHEMAT* for 3-D forward and inverse simulations

Bayesian Inversion
 Optimization of an objective function
 (AD technique used to determine the covariance matrix)

$$\Theta = \left(d - g (p) \right)_{4}^{T} C_{d}^{-1} \left(d - g (p) \right) + \left(p - p_{a} \right)_{4}^{T} C_{p}^{-1} \left(p - p_{a} \right) = Min!$$
least squares on parameters
least squares on data

- Geostatistical Monte Carlo
 Rock properties assigned randomly to a large
 number of models according to given histograms
- Ensemble Kalman Filter Recursive data assimilation (=comparison of data with simulation prediction and corresponding system adjustment) whenever in time data (and its errors) becomes available

Comparison of Methods: Soultz-sous-Forêts Tracer test

Southern German Crystalline Basement

- fragmented metamorphic rocks
- Data from the German Continental Deep Drilling KTB Pilot hole: 4000 m, main hole: 9101 m
- 3-D seismics, long-term hydraulic tests with seismic monitoring, log &core data

KTB – Reservoir Structure and Geometry

Inline 400 - measured

Calculation of coherency from eigen-structures of covariance matrices

GGE | Applied Geophysics and Geothermal Energy

Theory: Gersztenkorn & Marfurt, 1999

KTB – Reservoir Structure and Geometry

Inline 247 – faults and fissures

Inline 247 - measured

KTB - Reservoir Structure and Geometry

GGE | Applied Geophysics and Geothermal Energy

KTB - Reservoir Permeability

Vertical slices between 4 km and 7.2 km depth

Flow Simulation – KTB

GGE | Applied Geophysics and Geothermal Energy

Flow Simulation – KTB

- Units \rightarrow Rock properties
- Fracure analysis \rightarrow
 - Rock Permeability
 - Flow model

RWTH Aachen

Assignment of rock properties & development of a hydro-thermal flow model

KTB - Temperature Estimate (first results)

RWTH Aachen

Assignment of rock properties & development of a hydro-thermal flow model

GGE | Applied Geophysics and Geothermal Energy

GGE | Applied Geophysics and Geothermal Energy

Soultz-sous-Forêts

Tracer experiment with three boreholes

Given:

- *d*: data; p_a : a priori parameters, Ξ
- $\equiv g(p)$: non-linear system response function relating p and d

$$\Theta = (d - g(p))^{T} C_{d}^{-1} (d - g(p)) + (p - p_{a})^{T} C_{p}^{-1} (p - p_{a}) = Min!$$

Differentiation with respect to parameters yields iteration scheme for improving parameter estimates

$$p^{k+1} = p_a + \alpha (J^T C_d^{-1} J + C_p^{-1})^{-1} \cdot J^T C_d^{-1} (d - g(p^k))$$

 C_d and C_p : data and parameter covariances; $J_{ij} = \frac{\partial g(p)_i}{\partial t}$ is the Jacobian

Result:

= Parameter set minimizing the residual r = d - g(p) which approximates best the a priori parameters

Soultz-sous-Forêts – Bayesian Inversion

- Data: Recorded Injection and production flow rate
- Properties to estimate:
 - \equiv Porosity ϕ
 - Permeability k
 - \equiv Dispersion length α_D

Zone	φ (-)	k (10 ⁻¹⁵ m ²)	α _D (m)	
3 (fault)	0.0015	35.1	68	Rath
9 (host rock)	0.0069	0.0316	4.4	k Kosack

Nearly perfect fit with very simple model geometry!

Soultz-sous-Forêts -**Stochastic Monte Carlo Method**

Soultz-sous-Forêts – Stochastic Monte Carlo Method

Permeability distribution of best fit

Soultz-sous-Forêts – Stochastic Monte Carlo Method

Permeability and alternative flow paths (Permeabilities sampled from bi-modal histogram) 1500 1000 1000 500 500 y (m) y (m) 500 500 1000 1000 z (m) z (m) x (m) direct path wide path 1500 1000 v (m) 500 500 1000 z (m 500 x (m) multiple path log₁₀[Permeability (m²)] Darcy Velocity (m s⁻¹) -12.50 5.0e-06 -14.25

GGE | Applied Geophysics and Geothermal Energy

31

Christian Vogt

Data Assimilation by Ensemble Kalman Filter (EnKF)

Idea underlying EnKF: whenever in time data becomes available with known errors, compare with data predicted by simulation and adjust system accordingly

$$\Psi_{k}^{f} = F (\Psi_{k-1}^{a}) + \varepsilon_{s}$$
$$d_{k} = H \Psi_{k}^{f} + \varepsilon_{r}$$

Forward propagation of the system Ψ Data prediction

$$\Psi_k^a = \Psi_k^f + \alpha K_k (d_k - H \Psi_k^f)$$

Adjust system according to a weighted difference between data and predictio

$$K_{k} = C_{p,k}^{f} H^{T} \cdot (HC_{p,k}^{f} H^{T} + C_{d,k})^{-1}$$

Kalman Gain

k denotes time step; $C_{d,k}$ is data error covariance and $C_{p,k}^{f}$ is system error covariance obtained from an ensemble of system realizations which converges during repeated data assimilation steps

Soultz-sous-Forêts – Ensemble Kalman Filter (EnKF

- 1 km × 2.4 km × 1 km (21 × 48 × 21 nodes); Injection at GPK3
- 2 production wells at GPK2 and GPK4
- Simulation time 150 days
- 2 iteration steps

Soultz-sous-Forêts – Ensemble Kalman Filter (EnKF

Most likely estimates comprising all data

Soultz – permeability ensemble mean and standard deviation

- 1 km × 2.4 km × 1 km (21 × 48 × 21 nodes); Injection at GPK3
- 2 production wells at GPK2 and GPK4
- 150 days simulation time
- 3 iteration steps
- 880 realizations

Soultz - porosity ensemble mean and standard deviation

Test Location-Type 2: Sedimentary Basin

- Northern German Sedimentary Basin
 - sedimentary hydrocarbon reservoir
 - Data (provided by RWE Dea, Hamburg)
 - = 3-D seismics
 - = records and logs from ~ 100 boreholes
 - = drill cuttings, cores from selected reservoir sections

Sedimentary Basin – Reservoir Structure and Geometry

Sedimentary Basin – Relation Between Rock Properties and $v_{\rm P}$

Model Generation: Sedimentary Basin

Thermal model

GGE | Applied Geophysics and Geothermal Energy

Predicted target temperature

Interactive Visualization

Simulated streamlines of a geothermal doublet installation visualized in a virtual 3-D "cave" environment

GGE | Applied Geophysics and Geothermal Energy

Model of a geothermal doublet

Success probability for realizing 42 L/s at 75 °C: 1.6 %

Single-well concept

Single-well concept

90

Temperature (°C) 00 02 08

50 0

12

10

8

6

4∟ 0

Well Pressure (MPa)

GGE | Applied Geophysics and Geothermal Energy

Optimal experimental design (OED)

- Inversion Parameter estimation
 - Find the optimal parameter vector p*, so that the simulation g(p,x) reproduces the observation d to best fit.

$$\Theta \sim (d - g(x, p))^{T} C^{-1} (d - g(x, p)) \stackrel{!}{=} Min$$

- accuracy of estimated parameter
 - ≡ If N →∞ for noisy data: $ε(d_i, V_{di})$ for estimated parameter: $ε(p^*, F^{-1})$

Fischer-Matrix:
$$F \sim \left(\frac{\partial g(x,p)}{\partial p}\right)^T V^{-1}\left(\frac{\partial g(x,p)}{\partial p}\right)$$

- OED: Optimal experimental design:
 - Find the optimal experimental condition (position vector) \mathbf{x}^* , so that the parameter \mathbf{p} is estimated to best precision based on the available data $\mathbf{d}(\mathbf{x}^*)$

Ξ

Optimal experimental design – Synthetic Model

- Synthetic test case:
 - Best position to estimate the permeability of a fluvial sediment deposit based on a chemical tracer experiment
 - **E** Best observation point: $max(\partial c/\partial p)$

- : suitable observation site
- : unsuitable observation sites due to large sensitivity to errors in parameter

- Improved seismic processing for identifying geological units, fractures, and faults
- New methods relating seismic observations to hydraulic properties
- Improved assessment of thermal and petrophysical rock properties by integrated interpretation of logs, core, and cuttings
- Improved numerical methods for reservoir simulation, parameter estimation, and quantification of uncertainty
- Innovative use of immersive visualization for appraisal of results
- Development of new methods for optimized siting of boreholes and field exploration (OED)

Thank you for your attention!

GGE | Applied Geophysics and Geothermal Energy

