

2272-9

Joint ICTP-IAEA School on Synchrotron Applications in Cultural Heritage and Environmental Sciences and Multidisciplinary Aspects of Imaging Techniques

21 - 25 November 2011

X-Ray Absorption Spectroscopy

G. Pepponi Centre for Materials and Microsystems Fondazione Bruno Kessler Irento ITALY

X-Ray Absorption Spectroscopy Giancarlo Pepponi

Foundazione Bruno Kessler Centre for Materals and Microssystems Micro-Nano Anallytical Laboratory Via Sommarive 18, 38123 Povo (Trento) Italy tel. +39 0461 314491 www.fbk.eu pepponi@fbk.eu

acknowledgement: Florian Meirer - FBK Paolo Fornasini - UniTN

Interaction of X-Rays with matter

Photoelectric effect

Electron energy levels

Beer-Lambert's Law:

 $I(x) = I_0 \exp(-\mu x)$

Calculated for E = 17500eV

$$\mu = \sigma_c + \sigma_i + \tau$$

data from:

H. Ebel, R. Svagera, M. F. Ebel, A. Shaltout and J. H. Hubbell, Numerical description of photoelectric absorption coefficients for fundamental parameter programs, X-Ray Spectrometry, 32, 442–451 (2003)

Photoelectric effect – energy levels

Absorption edges Electron energy levels

Shells

FONDAZIONE BRUNO KESSLER

shell	n	Ι	j	spin sign	max number of electrons	
K	1	0	0.5	1	2	
L1	2	0	0.5	1	2	
L2	2	1	0.5	-1	2	
L3	2	1	1.5	1	4	
M1	3	0	0.5	1	2	
M2	3	1	0.5	-1	2	
M3	3	1	1.5	1	4	
M4	3	2	1.5	-1	4	
M5	3	2	2.5	1	6	

	z	shell	energy_eV	jump	level_width_eV					
	79	к	80724.9	4.874	52.1					
	79	L1	14352.8	1.15567	9.8					
	79	L2	13733.6	1.4	5.53					
	79	L3	11918.7	2.55	5.54					
	79	M1	3424.9	1.04	15.0					
	79	M2	3147.8	1.058	9.5					
	79	M3	2743.0	1.15776	8.5					
	79	M4	2291.1	1.07	2.18					
	79	M5	2205.7	1.092	2.18					
www.txrf.org/xraydata										

The fine Structure

Phenomenological Overview

Near Edge Fine Structure – origin - molecules

XANES: X-Ray Absorption Near Edge Structure, ends 50-100 eV above the edgefd
EXAFS: Extended X-Ray Absorption Fine Structure, starts 50 - 100 eV above the edge
NEXAFS: Near Edge X-Ray Absorption Fine Structure, typically used for moleules and the soft x-ray range

Near Edge Fine Structure

Theoretical description

Time-dependent perturbation theory (1st-order)

$$E_f - E_i = \hbar \omega$$

Interaction Hamiltonian

 $\mu_{tot}(\omega) = \mu_{el}(\omega) + \mu_{inel}(\omega)$

$$\mu_{\rm el}(\omega) \propto \left| \left\langle \Psi_i^{N-1} \psi_i \right| e^{i\vec{k}\cdot\vec{r}} \hat{\eta}\cdot\vec{p} \left| \psi_f \Psi_f^{N-1} \right\rangle \right|^2 \rho(\varepsilon_f)$$

Electron dipole approximation

$$e^{i\vec{k}\cdot\vec{r}} = 1 + i\vec{k}\cdot\vec{r} - \dots \approx 1$$

$$H_{I} \propto e^{i\vec{k}\cdot\vec{r}}\hat{\eta}\cdot\vec{p} \approx \hat{\eta}\cdot\vec{p} = \omega^{2}\hat{\eta}\cdot\vec{r}$$

$$\mu_{el}(\omega) \propto \left| \langle \Psi_{i}^{N-1}\psi_{i} | \hat{\eta}\cdot\vec{r} | \psi_{f}\Psi_{f}^{N-1} \rangle \right|^{2}$$

X-Ray Absorption Fine Structure

Perturbation of the absorption phenomena

The photoelectron is the real probe

the near EDGE region XANES

EXAFS XANES
$$W_{if} \propto \left| \left\langle \Psi_i \middle| H_I \middle| \Psi_f \right\rangle \right|^2 \rho(E_f)$$

The features of the absorption spectrum is dominated by the the density of final states

• XANES is a much larger signal than EXAFS

⇒ can be done at lower concentrations, and less-than-perfect sample conditions

- The interpretation of XANES is very complicated
- ⇔ there is **no simple analytic** (or even physical) **description** of XANES
- the EXAFS equation breaks down at low-k (1/k term) and the increase in the mean-free-path at very low-k

Still, there is much **chemical information** from the XANES region:

- the edge position and shape is sensitive to formal valence state, ligand type, and coordination environment
- ⇒ XANES can be used as a fingerprint method to identify phases.

An example: Chromium (Cr)

K edge XANES : edge energy = 5989.2 eV

For the case of Cr⁶⁺ pd-hybridization results in a **highly localized molecular orbital state**, giving a well-defined peak below the main absorption edge, indicating a transition to a bound electronic state.

An example: Chromium (Cr)

K edge XANES : edge energy = 5989.2 eV

Pollen as an indicator of environmental pollution.

(J.B. Boyce et al. Phys. Rev. B 1987)

Oxidation Numbers (formal valences)

 $\begin{array}{cc} I & Cu_2O\\ II & CuO \end{array}$

III KCuO₂

Higher transition energies are expected for higher valence states.

Characterization of a Degraded Cadmium Yellow (CdS) Pigment in an Oil Painting by Means of Synchrotron Radiation Based X-ray Techniques Geert Van der Snickt et al., Analytical Chemistry, 2009

Motivation

- Si wafer contamination control is required by the semiconductor industry to produce high quality products with fast decreasing dimensions and prices. Contamination results in quantifiable yield losses.
- the worst are metallic contaminants but: ionic and molecular organic contaminants can affect the wetability and the microroughness of the wafer surface, leading either to crystalline defects in the epitaxial layer or even to carbonisation and formation of silicon carbide

NEXAFS - the systematic of resonance positions

NEXAFS - the systematic of resonance positions

from J. S	Stöhr - NEXAFS Sp	ectroscopy	nitrogen HC≡N	399.7	420.8
			H_3C-NH_2		404.6
			F₃C–NO		407.5
			N≡N	401	418.9
			H_2N-NH_2		405.1
bond	energy of resona	ance [eV]	N≡O	399.7	414.5
carbon	pi*	sigma*	F ₃ CN=O	399.1	413.2
HC≡CH	285.9	310	N-F ₃		407.1
$H_2C=CH_2$	284.7	301	oyvaen		
H_3C-CH_3		291.2	C≡O	534.1	550
HC≡N	286.4	307.9	H ₂ C=O	530.8	544
H_3C-NH_2		291.5	H ₂ C–OH		537.4
C≡O	287.3	304	N=O	532 7	546.3
H ₂ C=O	286	300.5	0=0	530.8	540.5
H ₃ C–OH		292	HO–OH		533
H ₃ C–F		289.1	F ₂ –O		534.6

G. Pepponi et al. SPECTROCHIMICA ACTA B, vol. 58, n. 12, 2003

NEXAFS - speciation of fine atmospheric particulate

Ultratrace speciation of nitrogen compounds in aerosols collected on silicon wafer surfaces by means of TXRF-NEXAFS

S. Török et al., Powder Diffraction 19 (1), March 2004

Figure 1. N K-edge TXRF-NEXAFS spectra of ammonium sulfate and sodium nitrate standards prepared on silicon wafers.

Figure 2. A comparison of N K-edge TXRF-NEXAFS spectra of the submicrometer aerosol samples and of the ammonium sulfate standard.

Figure 3. An evaluation of the N K-edge TXRF-NEXAFS spectrum of the $1-2 \mu m$ aerosol fraction collected at Szatmarcseke, using a linear combination of the standard spectra of ammonium and nitrate.

the extended region EXAFS

Quantum states \rightarrow wavefunctions

$$\chi(k) = \frac{2\operatorname{Re}\int d\vec{r} \left(\psi_{i} \ \hat{\eta} \cdot \vec{r} \ \psi_{f}^{0^{*}}\right) \left(\psi_{i}^{*} \ \hat{\eta} \cdot \vec{r} \ \delta\psi_{f}\right)}{\int d\vec{r} \left|\psi_{i}^{*} \ \hat{\eta} \cdot \vec{r} \ \psi_{f}^{0}\right|^{2}}$$

$$\chi(k) = 3 \left| \hat{\eta} \cdot \vec{R} \right| \frac{1}{kR^2} \operatorname{Im} \left[f(k, \pi) \exp(2i\delta_1) \exp(2ikR) \right]^{\mathsf{R}}$$

$$f(k, \pi) e^{2i\delta} = \left| f(k, \pi) \right| e^{i\phi}$$

$$\chi(k) = 3 \left| \hat{\eta} \cdot \hat{R} \right|^2 \frac{1}{kR^2} \left| f(k, \pi) \right| \sin \left[2kR + \phi(k) \right]$$

Scattering amplitude aqnd phase shift

Examples: scattering properties

f(k) (top) and $\delta(k)$ (bottom)

for O, Fe, and Pb showing the dependence of these terms on atomic number Z

the EXAFS function

1. Absorption only takes place if there is an **available state** for the photo-electron:

i.e. a quantum state at exactly the right energy, and also the right angular momentum state

- A photo-electron with wave number
 k is created and propagates away
 from the atom
- 3. the photo-electron can scatter from the electrons of a neighboring atom, and return to the absorbing atom
- 4. considering point 1. we see that the presence of the photo-electron scattered back from the neighboring atom **will alter the absorption coefficient**:

This is the origin of XAFS

wavefunction

Theoretical Fe-Fe XAFS, R = 2.4855 Å σ^2 =0.005 Å² N = 4 compared to N = 8

Theoretical Fe-Fe XAFS, N=8 and R = 2.4855 Å σ^2 =0.000 Å² compared to 0.005 Å²

Theoretical Fe-Fe XAFS for N=8 and R=2.3855 compared to R = 2.4855 Å, σ^2 =0.000

What do we need?

- a "highly" (~dE/E 10⁻⁴) monochromatic but adjustable (in energy) X-ray source (Polychromatic source + monochromator)

- loads of photons

A synchrotron would be good

XAS – experimental acquisition transmission

Good for diluted samples!

BUT: watch out for self absorption in "concentrated samples"

F. Meirer et al., SPECTROCHIMICA ACTA B,vol. 63,n. 12,2008, pp. 1496-1502

XAS – experimental acquisition electrons

AEY = Auger Electron Yield

- narrow energy window
- only direct Auger electrons
- spurious structures from photoelectrons

- Photoel. (direct + secondary) = background

Bulk materials

XAS – experimental acquisition Electrons vs. fluorescence

K. Janssens

Copper in lustre

"When XANES data are recorded in the fluorescence mode of detection, where the lustre layer is probed down to a depth of 50 μ m, Cu appears to be predominantly present under an oxidized form (i.e., as Cu⁺ in Cu₂O, cuprite). However, if the TEY mode of detection is used, where only the top 100 nm of the same lustre layer is analysed, a different profile is obtained, showing the presence of Cu in the metallic state."

XANES spectra obtained in fluorescence (fluo) and total electron yield (TEY) mode of the red lustre, compared to the XANES profiles of Cu2O and metallic Cu.

S.R. incoming white beam

Position-sensitive detector

No high resolution nut very fast Follow dynamics of non equilibrium systems

EXAFS function

Microfocus spectroscopy experiments on mineral deposits and in cultural heritage science at Diamond Light Source. Josep Roque-Rosell1 et al.

EXAFS example – Copper in lustre FONDAZIONE BRUNO KESSLER

Ceramic lustre from Paterna (Spain). Sampled region, TEM pictures showing copper nanoparticles, XRF mapping for Cu Ka, Cu K edge EXAFS spectra obtained across the lustre decoration and magnitude of the Fourier Transform of the EXAFS spectra.

J. 007

 $\chi_n(k)$ Contribution from all n-order paths

 $g_n = n$ -body correlation function

ICTP-IAEA - 2011 - Trieste - An introduction to XAS - Giancarlo Pepponi

- G.S. Brown and S. Doniach: *The principles of X-ray Absorption Spectroscopy*, in Synchrotron Radiation research, ed. by E. Winick and S. Doniach, Plenum (New York, 1980) [A general introduction to X-Ray absorption]
- P.A. Lee, P.H. Citrin, P. Eisenberger, and B.M. Kincaid, Rev. Mod. Phys. 53, 769 (1981) [Review paper on EXAFS]
- T.M. Hayes and J. B. Boyce, Solid State Physics 27, 173 (1982) [Review paper on EXAFS]
- B.K. Teo: *EXAFS, basic principles and data analysis*, Springer (Berlin, 1986) [Introductory book on EXAFS]
- D.C. Koningsberger and R. Prins eds.: X-ray Absorption: principles and application techniques of EXAFS, SEXAFS and XANES, J. Wiley (New York, 1988) [Introductory book on XAFS]
- M. Benfatto, C.R. Natoli, and A. Filipponi, Phys. Rev. B **40**, 926 (1989) [Paper on multiple scattering calculations]
- J. Stöhr: NEXAFS spectroscopy, Springer (Berlin, 1996) [Book on NEXAFS]
- J.J. Rehr and R.C. Albers, Rev. Mod. Phys. 72, 621 (2000) [Review paper on EXAFS]
- P. Fornasini, J. Phys.: Condens. Matter 13, 7859 (2001) [EXAFS and lattice dynamics]

XAFS Society home page: http://ixs.csrri.iit.edu/IXS/

Software : ifeffit / Athena / Artemis/ Sixpack