

2273-1

Second Workshop on Open Source and the Internet for Building Global Scientific Communities with Emphasis on Environmental Monitoring and Distributed Instrumentation

28 November - 16 December, 2011

Introduction to networking

A. Induruwa Canterbury Christ Church University, Canterbury UK

Introduction to Computer Networks

Abhaya Induruwa

Department of Computing
Canterbury Christ Church University
United Kingdom

Introduction to Networks

How much do you know about networks?

Some Questions?

- What type of networks have you used?
- How would you classify them?
- Terminology you are familiar with?
- Can you describe the data communication needs of a distributed data acquisition system?

Some Questions?

What is the size of the Internet?

 What parameters would you use to measure the size of the Internet?

Diagram of the First Internet

The first successful host-host connection was made on 29 October 1969

Size of the Internet

- What best estimates can you find for the size of the Internet today?
- http://mashable.com/2011/01/25/internet-size-infographic/
- http://www.worldwidewebsize.com/
- http://theroxor.com/2010/10/28/the-awesome-size-of-the-internetinfographic/
- http://www.internetworldstats.com/stats.htm
- http://www.akamai.com/dl/whitepapers/akamai_soti_q111.pdf?curl=/dl/whitepapers/akamai_soti_q111.pdf&solcheck=1&
- http://netforbeginners.about.com/od/weirdwebculture/f/How-Big-Is-the-Internet.htm

plus, do your own research!

Introduction to Networks

- 4 lectures
 - Overview of Network Architectures, Protocols
 - TCP/IP Internals
 - Useful protocols in TCP/IP stack
 - DHCP
 - tftp
 - NFS
 - Using Wireshark (originally Ethereal)
 - Introduction to Wireless Sensor Networks

Paradigm Shifts since early 1950s

Туре	Description	Communication Technology	Transmission Technology
Terminal Networks	Connect "dumb" terminals to a central computer	WAN – PSTN 56 – 64 Kbps	Copper cable
Data Networks	Connect networks to networks	WAN – PSDN 56 Kbps – 10 Gbps	Coax cable Wireless •Radio, Satellite, µWave OF
Local Area Networks	Connect computer resources spread in a small area	LAN 1 Mbps – 10 Gbps	Coax cable •Thick wire •Thin wire •UTP, STP, OF •WiFi

Paradigm Shifts since early 1950s

Туре	Description	Communication Technology	Transmission Technology
Metropolitan	Connect resources spread in a city	MAN	Coax Cable
Area		100 Mbps –	OF, WiMAX,
Networks		10 Gbps	µWave
Personal Area	Connect resources localised in a small area	PAN	UTP, WiFi,
Networks		100 Kbps -	Bluetooth, IrDA
Wireless Personal Area Networks	Connect resources localised in a small area using short range wireless	WPAN	RFID, IrDA, Bluetooth, ZigBee

Paradigm Shifts since early 1950s

Туре	Description	Communication Technology	Transmission Technology
Master Slave	Terminal Networks	WAN (PSTN)	Coax Cable
Distributed – Client Server	Enterprise computing. Connect resources belonging to one organisation	WAN (PSDN) , LAN, MAN, PAN, WSN	UTP, WiFi, Bluetooth, IrDA
Distributed – Grid Computing	Connect resources distributed across the globe. Also P2P	WAN, LAN, PAN, WSN, WPAN	OF, Satellite, UTP, WiFi, RFID, IrDA, Bluetooth, ZigBee
Cloud Computing	Extra thin clients connect to resources concentrated in a few places.	WAN, LAN, PAN, WSN, WPAN	OF, Satellite, UTP, WiFi, RFID, IrDA, Bluetooth, ZigBee

Networking Standards

- Why do we need standards?
- Standard making bodies:
 - -ISO
 - IEEE
 - ANSI
 - IETF
 - National Standard Bodies
 - SIGs/Forums/Alliances

Reference Models

ISO – OSI (Open System Interconnect)

7 Layer Reference Model				
	Unit	Layer	Function	
User/Host Layers		7 - Application	Application to Network Process and vice-versa	
	Data	6 – Presentation	Data representation & encryption	
		5 – Session	Interhost communication	
	Segment	4 – Transport	End-to-end connection	
Network Operator /Media Layers	Packet	3 – Network	Network routing	
	Frame	2 – Data Link	Physical Link	
	Bit	1 – Physical	Physical Media	

Reference Models

IEFT TCP/IP Reference Model (3 + 1 layers)

Unit	Layer	Function	Protocol(s)
Data	3 - Application	Application to Network Process and vice-versa	Many
Segment	2 – Transport	End-to-end connection Reliability and Flow Control	TCP or UDP
Packet	1 – Network	Network routing	IP
Frame/Bit	0 – Host to network	Link control and bit transfer	Many

Reference Models

TCP/IP – 5 Layer Reference Model				
Unit	Layer	Function	Protocol(s)	Standard body
Data	5 - Application	Application to Network Process and vice-versa	Many	IETF
Segment	4 – Transport	End-to-end connection Reliability and Flow Control	TCP or UDP	IETF
Packet	3 – Network	Network routing	IP	IETF
Frame	2 – Data Link	Logical Link Control (LLC) Media Access Control (MAC)	Ethernet + others	IEEE + other forums
Bit	1 – Physical Media	Bits on wire	Many	ANSI, ISO

LAN

MAN

Bridging and Management Layer IEEE 802.1

Logical Link Control (LLC) Layer IEEE 802.2

CSMA/CD IEEE 802.3 Token Bus IEEE 802.4

Token Ring IEEE 802.5

FDDI IEEE 802.6

MAC Layer

WLAN – CSMA/CA IEEE 802.11 a/b/g/n

WPAN IEEE 802.15 WMAN IEEE 802.16

54 Mbps 5 GHz 11 Mbps 2.4 GHz 54 Mbps 2.4 GHz 300/600 Mbps 2.4/5 GHz

LAN

MAN

Bridging and Management Layer IEEE 802.1

Logical Link Control (LLC) Layer **IEEE 802.2**

MAC

CSMA/CD **IEEE 802.3** Token Bus IEEE 802.4 Token Ring IEEE 802.5 **FDDI** IEEE 802.6

IEEE 802.16

WMAN

Layer

WLAN CSMA/CA IEEE 802.11 a/b/g/n

> 👪 Bluetooth" IEEE 802.15.1

WPAN IEEE 802.15

High Bit Rate (11/22/33/44/55 Mbps

IEEE 802.15.3

LBR CSMA/CA IEEE 802.15.4

ZigBee° Alliance

Abhaya Induruwa Introduction to Networks

LAN

MAN

Bridging and Management Layer IEEE 802.1

Logical Link Control (LLC) Layer **IEEE 802.2**

MAC

CSMA/CD **IEEE 802.3** Token Bus IEEE 802.4 Token Ring **IEEE 802.5** **FDDI** IEEE 802.6

Layer

WLAN IEEE 802.11 a/b/g/n

WPAN IEEE 802.15 **WMAN** IEEE 802.16

Worldwide Interoperability for Microwave Access **WIMAX** FORUM®

LAN

MAN

Bridging and Management Layer IEEE 802.1

Logical Link Control (LLC) Layer IEEE 802.2

CSMA/CD IEEE 802.3 Token Bus IEEE 802.4

Token Ring IEEE 802.5

FDDI IEEE 802.6

MAC Layer

WLAN IEEE 802.11 a/b/g/n WPAN IEEE 802.15 WMAN IEEE 802.16

MBWA IEEE 802.20

The ZigBee Protocol

- The ZigBee protocol carries all the benefits of the 802.15.4 protocol with added networking functionality.
- The ZigBee protocol was engineered by the <u>ZigBee</u>
 <u>Alliance</u>, a non-profit consortium of leading
 semiconductor manufacturers, technology providers,
 OEMs and end-users worldwide.
- The protocol was designed to provide OEMs and integrators with an easy-to-use wireless data solution characterized by low-power consumption, support for multiple network structures and secure connections.
- The ZigBee protocol was designed to carry data through the hostile RF environments that routinely exist in commercial and industrial applications.

ZigBee protocol features

- Low duty cycle Provides long battery life
- Low latency
- Support for multiple network topologies: Static, dynamic, star and mesh
- Up to 65,000 nodes on a network
- 128-bit AES encryption Provides secure connections between devices
- Collision avoidance
- Link quality indication
- Clear channel assessment
- Retries and acknowledgements
- Support for guaranteed time slots and packet freshness

Comparison of three technologies

Standard	ZigBee IEEE802.15.4	WiFi IEEE802.11b	Bluetooth IEEE802.15.1
Range (m)	100	100	10
Battery life (days)	100 – 1000	0.5 – 5.0	1 – 7
No of nodes	> 64,000	32	7
Application	Monitoring & Control	Web, Email, Video	Cable Replacement
Throughput (Kb/s)	20 – 250	11,000	720

LAN/MAN/WPAN Standards

- Mostly IEEE standards
- Bluetooth SIG
- WiFi forum certification
- WiMAX forum certification
- SIGs and forums supplement the work of the IEEE

CSMA/CD Standards

- Originated from the DIX Ethernet standard
- Designed by Bob Metcalf in 1973
- IEEE commenced standardising CSMA/CD in February 1980, hence 802 committee
- Now a family of standards
- more than a billion cards have been sold
- 48 bit unique NIC (MAC) address

IEEE 802.3 family

- 802.3 (1983) 10Base5
- 802.3a (1985) 10Base2
- 802.3i (1990) 10Base-T (cat 3/4)
- 802.3j (1993) 10Base-F
- 802.3u (1995) 100Base-TX (cat 5), 100Base-FX
- 802.3z (1998) 1000Base-X
- 802.3ab (1999) 1000Base-T (cat5/6)
- 802.3ae (2003) 10GBase-over Fibre
- 803.3an (2006) 10GBase-T (cat 6/7)
- 802.3ba (2009 -10) 40 Gbps to 100 Gbps

CSMA/CD Frame Structure

Preamble 10101010 SOF 10101011

Type indicates which protocol is encapsulated in the payload

How CSMA/CD Works (1)

- All computers are listening
- No activity on the bus

How CSMA/CD Works (2)

- A decides to transmit to C
- •B, C, D do not transmit
- C receives data

How CSMA/CD Works (3)

- A decides to transmit to C
- C also decides to transmit to A
- B, D do not transmit
- Collision occurs

How CSMA/CD Works (4)

- A and C wait a random time
- B and D listen to the bus
- B and/or D can decide to transmit
- •at the end of the wait A and C can transmit

How do we build CSMA/CD LANs?

- Slow speeds can use hubs or switches
- High speeds require the use of switches
- Use of switches improve performance as collisions are avoided on switched connections

Hubs and Switches

They operate at different layers

Figure 4-46. (a) Which device is in which layer. (b) Frames, packets, and headers.

 (b) shows how user data gets encapsulated at different layers of the protocol stack

Wireless LANs

- Uses Radio Frequency (RF) in the GHz band to transmit and receive data over air.
- IEEE 802.11 standards family
 - 802.11b (2.4 GHz/11 Mbps), 802.11g (2.4 GHz/54 Mbps)
 - Proprietary enhancements
 - 802.11b+ (22 Mbps), 802.11 Super g (108 Mbps)
 - 802.11a (5 GHz/54 Mbps)
 - 802.11n (100-300 Mbps) 600 Mbps in the future
- Typical operating ranges are
 - Indoor 30m at 11 Mbps and 90m at 1 Mbps
 - Outdoor 120m at 11 Mbps and 460m at 1Mbps
 - Inverse relationship between data rate and range

IEEE802.11 Data Frame Structure

Source: Tanenbaum (2003)

IEEE802.11 Data Frame Structure

How CSMA/CA Works

Open Source for Scientific Environment, Trieste, 28 November – 16 December 2011

•D is within range of B, but not within A

How CSMA /CA works

- C hears A's RTS and sets Network busy for the duration including ACK
- D hears B's CTS and sets Network Busy

Grid as an example of Distributed Computing

