

2273-3

Second Workshop on Open Source and the Internet for Building Global Scientific Communities with Emphasis on Environmental Monitoring and Distributed Instrumentation

28 November - 16 December, 2011

Powerful Embedded Systems

U. Raich

CERN, Geneva

Switzerland

Powerful Embedded Systems

Ulrich (Uli) Raich CERN BE department Beam Instrumentation Group

Computers from big to small

In the 1980:

- Big: mainframe computer (~ 1M\$)
- Medium size: mini-computers (VAX, PDP-11 ...) (~200 k\$)
- Small: Micro computers (~2 k\$)

Today:

- Big: PCs arranged in computing farms (~100k\$)
- A little less big: Desktop PCs and Laptops (~2k\$)
- Medium size: PDA, handphones (~200 \$)
- Small: Micro controllers in embedded systems (50 c)

Data Acquisition and Control

- PC with devices directly attached through dedicated interfaces
- A powerful embedded system with attached sensors is connected to a network and controlled from a PC
- A network of "intelligent sensors" is read by an powerful embedded system which in turn is controlled by a PC

What do we call a "powerful embedded system"

- Micro-controllers are powerful enough to run a full operating system
- Flash memory to store boot loader or full operating system
- Typical RAM memory sizes of 64 or 128 Mbytes
- Many interfaces allow to connect to the outside world:
 - Ethernet, WiFi
 - I2C bus
 - USB
 - RS-232
 - TTF screen and touch screen

Where are they used?

- The first such systems were used in network routers
- Now in games consoles
- Mobile phones
- GPS systems
- PDAs

These systems are mass produced and therefore cheap. The components are cheap as well

 Can we make use of this for data acquisition and control applications?

We have 2 types of systems:

- PCEngines Wrap board a commercial board designed as router hardware
- A home built ARM-9 system designed for camera readout in an astronomy experiment The board has been designed by G. Kasprowics, a doctoral student at CERN

- Intel compatible
 - Atom, Geode, ...
- Different architecture (needs cross compilers)
 - MIPS
 - PowerPC
 - ARM

The PC-Engines Wire Router Application Platform (WRAP)

Information on the WEB

- PC Engines WEB site
- AMD Geode SC1100 WEB site

The Wrap board

- Runs the Geode chip, a i486 compatible micro controller
- Has a stripped down BIOS similar to a PC
- CF card interface
- Ethernet
- Mini PCI
- LPC bus (could be used to interface sensors)
- Designed as a Wifi to Ethernet gateway

WRAP features

- Uses the AMD Geode Chip (486 compatible)
- 266 Mhz SC1100 CPU
- 128 Mbytes of RAM
- ~3-5 Watts
- Small (128 kBytes) flash for BIOS
- I2C bus
- LPC (low pin count bus)
- Compact flash interface
- 100 Mbit Ethernet
- Cost: ~ 100 \$ US (the board is now discontinued but replaced by a similar design (ALIX)

ARM-9 board

The ARM (Advanced Risc Machine) architecture is very popular for hand held devices

Advantages:

- Cheap
- Powerful
- Many manufacturers have micro-controllers with a big range of interfaces
- Well supported by open source software (Linux and GNU compiler chain + libraries)

The ARM board

The ARM's back side

Some features

- CPU with arm-9 architecture (at91sam9263)
- Program for booting in ROM
 - Program for booting in ROM
 - 100 Mbit Ethernet connection
 - Memory controller for
 - SDRAM memories
 - Nand flash memories
 - Dataflash memories
 - Asynchronous serial interface (RS-232)
 - Debugging/console port (RS-232)

More features (ARM)

- I2C bus interface
- TFT screen interface
- Audio interface (can be used for data sampling)
 - 96 ksamples/sec stereo input
 - Stereo outputs
- Harddisk interface
- GSM (not mounted on our boards)
- Bus extension connector (not mounted on our boards)
- 3 USB ports

The I/O board

- Board specifically designed for this college
- Has a series of I2C and 1-wire devices
- I2C is a 2-wire (data + clock) serial bus invented by Phillips
- Often used on CPU boards for infrastructure (ventilator and temperature control)
- In at91sam9263 I2C is implemented in the chip
- 1-wire bus (Dallas) accessed by I2C to 1-wire bridge

WEB resources for at91sam9263

- Atmel at91sam9263 Website
- Atmel at91sam9263 evaluation kit Website
- Linux4sam Website