

2269-10

Workshop on New Materials for Renewable Energy

17 - 21 October 2011

Advancing electrocatalysis in intermediate temperature fuel cells

Sossina M. HAILE California Institute of Technology Steele Laboratories, Materials Science Pasadena U.S.A.

Advancing Electrocatalysis in Intermediate Temperature Fuel Cells

- 1. Oxide Electrocatalysts more Active than Pt
- 2. Diffusion-limited Electrodes
- 3. Butler-Volmer Kinetics at the Nanoscale

Sossina M. Haile

California Institute of Technology

Workshop on New Materials for Renewable Energy October 17-21, 2011, Trieste, Italy

pes differer	ntiated by e	e lectrolyte Portable	e , tempera	ture of ope Stationary	Corrosive li ration
Туре	PEM	AFC	PAFC	MCFC	SOFC
°C	90-110	100-250	150-220	500-700	700-1000
Fuel	$H_2 + H_2O$	H ₂	H ₂	HC + CO	HC + CC
Electrolyte	Nafion	КОН	H₂PO₄	Na ₂ CO ₂	Y-ZrO ₂
Ion	$H_3O^+\downarrow$	<i>OH</i> -↑	$H^+ \downarrow^{L}$	$CO_3^{2-\uparrow}$	<i>O</i> ²⁻ ↑
Oxidant	0 ₂	$O_2 + H_2O$	O ₂	$O_2 + CO_2$	02
	Fuel flexibili	ty, efficiency	→ ←	Easy therma	l cycling

Candidate Solid Electrolytes

3

Performance Limitation

- Thin-electrolyte cells prepared
- Such cells are electrode limited
 - Ceria fuel cell anode
 - Ceria-nickel composite
 - □ CsH₂PO₄ fuel cell electrodes
 - CsH₂PO₄-carbon-Pt composite

Where is the active site?

Electrochemical Reaction Pathways

must know pathway to design optimal electrode architectures

Identifying Active Interfaces

 Patterned metal current-collectors/electrodes by photolithograpy

 Nanoscale electrode by conducting AFM

State-of-the-Art: Patterned Structures

- Patterned metal current-collectors/electrodes increasingly pursued for quantitative studies
- Typically degrade during experimentation

A. M. Sukeshini, B. Habibzadeh, B. P. Becker, C. A. Stoltz, B. W. Eichhorn, and G. S. Jackson, *J. Electrochem. Soc.* **153** A705-A715 (2006).

This work: Part I

- Patterned metal current collectors on doped ceria
 - Thermal stability
 - Thick films; well-defined edges
- Hydrogen electro-oxidation
- Objective:
 - Determine if the oxide surface plays a role in the electro-oxidation

Ceria as Both Anode & Electrolyte

W. Lai, S. M. Haile. J. Am. Ceram. Soc., 88 2979 (2005)

Ceria in Fuel Cell Anodes

- General observation of improved activity
 - Resistant to carbon deposition
 - Redox tolerant
 - Impregnate Ni/YSZ anodes with ceria
 - Replace YSZ with ceria
 - Doped or undoped
- Oxide apparently plays a direct role in electrocatalysis

Anode reaction: $H_2 + O^= \rightarrow H_2O + 2e^-$

10

Film Growth by PLD

- Highly oriented/epitaxial SDC on single crystal YSZ
 (100), (110) & (111)
- Composition as desired
- Low pO₂ gives high density

rms roughness: 1.41 nm

Typical Deposition Conditions

Laser Energy	300 mJ
Substrate Temperature	650 °C
Pulses	100k @ 20 Hz
Oxygen Partial Pressure	20 – 100 mTorr

Film Quality and Stability

After electrochemical characterization at 650 °C under H₂-H₂O-Ar

Impedance Response

- Exposed Patterns
 - Fixed SDC/Pt ratio
 - 3PB density varied
 - Approximately constant
 - Embedded Pattern
 - Higher activity
 - Pt 3PBs are not playing a role!

Dependence on Features Sizes

- Activity is independent of 3PB density
- Pt and Ni are essentially identical (not shown)

Dependence on Features Sizes

Pt and Ni are essentially identical

Activity Normalized to Ceria (2PB)

- All data collapse to a single curve
 - Ceria is more active than Pt! 100 μm electron transport
- Extrapolate to fuel cell conditions ($pH_2 = 1$, $pH_2O = 0.03$ atm)
 - Predict 1 Ωcm² at 650 °C for a flat (!) electrode

Structuring for Higher Activity

Intermission

- Ceria has high inherent activity for hydrogen electrooxidation
- Values are comparable or better than the most promising oxide anodes
- At the length scales accessible by photolithography, triple phase boundaries are negligible
 - Pt and Ni are essentially identical
- Electron transport over long (µm) distances through ceria occurs
- Freed of the 'tyranny' of the triple phase boundaries, a plethora of anode designs can be considered

This Work: Part II

- Geometrically defined Pt current collectors on CsH₂PO₄, a superprotonic solid acid conductor
- Hydrogen electro-oxidation
- Objective:
 - Determine reaction pathway
 - Determine geometry independent triple-phase boundary resistance (per unit length)

Solid Acid Family of Compounds

- Acid salts
- MH₂XO₄, MHXO₄, M₃H(XO₄)₂
 - $M = Cs, K, Rb, NH_4$
 - X = S, P, Se, As
- "Superprotonic" transport

- CsH₂PO₄ is best choice for fuel cell electrolyte
 - Operate at T > 230 °C
 - Humidify atmosphere

S. M. Haile. *Materials Today* 2003, 24-29

M. W. Louie, M. Kislitsyn, K. Bhattacharya and S. M. Haile. Solid State Ionics 2010, 181(3-4), 173-179

Technology Development Path

Electrochemical reaction pathways

 lons, electrons, adsorbates, gaseous/aqueous species interact across multiple phases

 Kinetic parameters → choose electrode components and design structure

Pt | CsH₂PO₄ | Pt Symmetric Cells

- Thin film Pt electrodes
 - Polycrystalline CsH₂PO₄ substrates
 - Deposition time \rightarrow film thickness
 - 7.5 to 375 nm
 - Shadow-mask \rightarrow film diameter
 - 1.3 to 19 mm

M. W. Louie, K. Sasaki and S. M. Haile. *ECS Trans*, **13**(28), 57-62 (2008) M. W. Louie and S. M. Haile, *Eng. Env. Sci.* **4** (10), 4230-4238 (2011)

Challenging Characteristics

- Sputter deposition with shadow masks
 - Shallowly defined edges, sloped region ~40 μ m, < 10% of total

- Deposition on undulating surface
 - Suggests thickness variation; on smooth surface $\pm~2\%$
- Phase transformation of CsH₂PO₄
 - Generation of microcracks, transmitted to Pt; $9 \pm 4 \text{ mm/mm}^2$

- Sputter deposition
 - Possible inherent porosity

Electrochemical Measurements

- Current collectors
 - Toray carbon paper
- Conditions
 - 200-250 °C
 - -0.06-0.5 atm H₂
 - -0.3-0.5 atm H₂O
 - No gradient

- $0 \pm 10 \text{ mV}$
- 1 MHz 100 mHz

Thickness Dependence of Response

Diameter Dependence of Response

Regime I: Thick Pt Films

- Thickness and area-dependent electrode process
- Half tear-drop, Warburg arc

- Implies rate-limiting process is diffusion!
- Warburg arc in Nyquist plot is a feature of diffusion
- What kind of diffusion?

Warburg Diffusion

- Infinitely fast charge transfer at x = 0
- For semi-infinite diffusion, $x = \infty$
- For bounded diffusion @ x = L
 - Reversible electrodes (fast supply of R)
 - Irreversible "blocking" electrodes

Regime I: Thick Pt Films

- Diffusion with reversible bounds
 - Gaseous? Pore walls? Bulk?

- Large blocking arc
 - → Pathway involves metal|gas interface, followed by diffusion
 - \rightarrow H₂(g) through pores negligible

Quantitative Analysis of Diffusion

$$Z_{W}(\omega) = Z_{\infty} \frac{\tanh\left(\sqrt{j\omega\tau}\right)}{\sqrt{j\omega\tau}}, \qquad \tau = \frac{L^{2}}{D_{H}}, \qquad Z_{\infty} = \frac{A}{L} \frac{k_{b}T}{(ez)^{2}c_{H}D_{H}}$$

Finite-length Warburg equation

<i>T</i> [°C]	$D_{\rm H} [\times 10^{-12} {\rm m}^2 {\rm s}^{-1}]$	c _H [×10 ⁻⁴ H/Pt]
250	1.6 ± 0.7	2.4 ± 0.8
225	0.9 ± 0.5	2.8 ± 0.8

Apparent grain size dependence of D_H

Consistent with interstitial hydrogen diffusion

Regime II: sub-30 nm Pt Films

- Decreasing thickness will provide limited benefit
- Reaction resistance is 71% of total for 7.5 nm films
- Stability challenge: thinner films coarsen

Implications for Solid Acid Fuel Cells

Anode performance comparison

Electrodes	Resistance Ω cm ²	Pt loading mg/cm ²	Loading-normalized performance S/mg
8 nm Pt film (sputter depos.)	3.1 ± 0.5	0.017	19

- Improved utilization of Pt
- 50-fold increase in surface area
 - 0.06 Ω cm²; 0.85 mg/cm²
- Scalable strategies for nanoparticle synthesis, Pt incorporation
 - Electrospray deposition, Pt-AcAc CVD

A. B. Papandrew, C. R. I . Chisholm, R. A. Elgammal, M. M. Ozer and S. K. Zecevic. *Chem Mat* , accepted

Implications for Solid Acid Fuel Cells

- Is there a role for triple phase boundaries?
- Geometry utilized disfavors TPBs (too few)
- Au overlayer blocks two-phase pathway
 - Permits estimation of lower bound resistivity: $41 \text{ k}\Omega \text{ cm}$
- Consider geometry required for comparable activity from TPBs and two-phase pathway
 - Porous, 7.5 nm thick film
 - Area/perimeter = 7.6 μ m
 - Finer structure required if ρ (TPB) exceeds lower bound

~9 µm

Summary: 2-Phase Pathway Dominates

This work: Part III

38

- Geometrically asymmetric, nanoscale Pt current collectors on CsHSO₄, a surrogate superprotonic solid acid conductor;
 - Superprotonic transition at 141 °C
- Oxygen electro-reduction
- □ Objective:
 - Uncover nanoscale heterogeneity in electrode kinetics
 - Ultimately, if such heterogeneities exist, design electrodes that maximize high activity sites

Challenge of Symmetric Cells

Nanoscale Electrodes

40

- Asymmetric geometry isolates electrode behavior
- Objective: identify highly active sites/features

Typical Surface Features

41

5 10 15 20 25 30 35 µm 0 1.27µm CsH_2PO_4 (CDP) 5 10 *T*_{SP} = 228 °C 15 1.3 μm 20 -2.3 μm Active 25 humidification 30 35 required for $40 \ \mu m$ 40 µm -2.31µm operation

CsHSO₄ (CHS) *T*_{SP} = 141 °C

No such requirement

Pt | CsHSO₄

Oxygen electroreduction on Pt

 $T_{surf} \sim 150$ °C, ambient air, pO₂ = 0.21 atm, pH₂O = 0.02 atm, Force ~ 1.4 uN

Oxygen electroreduction on Pt

44

• Impedance spectra under bias

- Two processes visible
- Spectra measurable only where current is sufficient
- Different tips display similar, not identical, features

-1.1 V bias D Multiple processes hidden in d.c. measurement

Analysis of Oxygen Electroreduction

 $\square R_{LF}$

- Tafel-like behavior
- \blacksquare Dominates at small η
- R_{HF}
 - Ohmic behavior
 - Dominates at large η

□ R_{TOT}

- **□** Too large at small η
- Reflects R_{HF} at intermed

DC vs. AC Response

Agreement between AC and DC

DC for quantitative analysis, AC for clarification

- Linear regime dominates voltage range of interest
 - Butler-Volmer kinetics for charge transfer

Spatial Variation of Electrocatalysis

Spatial Variation of Electrocatalysis

Unexpected Correlation

Physical Interpretation

Summary

- Ceria-metal anode composites are dominated by activity of the oxide component
 - Not triple-phase boundary limited
- Pt anodes in solid acid fuel cells show high solubility and diffusivity of Pt
 - Not triple-phase boundary limited
- Pt AFM tip cathodes on solid acid electrolytes reveal spatial heterogeneity
 - Correlation between exchange current and asymmetry factor qualitatively explained
 - Atomistic picture? Universality? Usefulness?

Acknowledgements

- US National Science Foundation
 - Solid State Chemistry Program
 - Ceramic Science Program
 - Materials Research Science & Engineering Centers
 - Graduate Research Fellowship Program
- Gordon and Betty Moore Foundation
- Stanford Global Climate and Energy Program
- Dr. William C. Chueh, Dr. Mary W. Louie
- Prof. Adrian Hightower

Prof of Engineering, Harvey Mudd College Caltech Ph.D.

Summary: 2-Phase Pathway Dominates

Fuel Cell Operation

Fine CsH₂PO₄ H₂, H₂O | cell | O₂, H₂O Power density (W /cm²) 1.2 100['] sccm $T = 248^{\circ}C$ 200 sccm 8 mg Pt/cm² 1.0 Voltage (V) 0.8 0.6 0.4 Slurry deposit 0.2 36 µm electrolyte Electrocatalyst ^{__}0.0 2.0 2.7mm 0.0 0.0 0.5 1.0 1.5 $25 \mu m$ CsH₂PO₄ Current density (A / cm^2) Electrocatalyst Porous Stainless Steel Sealant T. Uda & S.M. Haile, Electrochem & Solid $10-40 \,\mu m$ pores, ~40% porosity State Lett. 8 (2005) A245-A246

Open circuit voltage: 0.9-1.0 V Peak power density: 285-415 mW/cm²

Electrocatalyst: CDP + Pt black + 40wt% Pt/C = 3 : 3 : 1 by weight

Electro-catalysis as Rate-limiting Step

Film morphology by SEM

Implications: 2PB vs. 3PB Pathway

- 2PB pathway can occur with Pt catalysts!
- New geometry for electrodes, not based on nanoparticles

$d \leq 400$ um (actual value TBD)

Performance of Solid Acid Fuel Cells

Open circuit voltage: 0.9-1.0 V Peak power density: 285-415 mW/cm² Faraday discussions

AC Impedance Spectroscopy

ACIS: Nyquist plot

Separate electrochemical reaction steps with different characteristic times

Platinum symmetric cells

- Cell fabrication
 - CsH₂PO₄ polycryst disc: densified, sanded, rinsed, treated at ~100 °C
 - Shadow masked (1-19 mm diameter)
 - Magnetron sputter deposition @ RT
- Electrochem. characterization
 - 200-250 °C, H₂/H₂O/Ar
 - 0.06-0.5 atm H₂, 0.3-0.5 atm H₂O
 - ACIS , 0 \pm 10 mV, 1 MHz 100 mHz
- Resistance at OCV \rightarrow indication of activity
- Examine dependence on pH₂, pH₂O, T, geometry

10 µm

From Breakthrough to Product

2001

2007

S U P E R P R O T O N I C

2007

2011

SAFCell, Inc.

2008

2" MEA 20 cell stack 60 W net

Tom Friedman talking to his wife on an SAFC powered cell phone

Fuel Cell Basics

- Ion-conducting, dense electrolyte membrane
- Porous, electron- and ion-conducting electrodes

Performance of Solid Acid Fuel Cells

- 400 mW/cm² peak power density (H₂ | cell | O₂ at 248 °C)
 - Thin CsH₂PO₄ layer
 - Composite electrodes w/ Pt loading ~ 8 mg/cm²
- Overpotentials at electrodes are limiting

AC Impedance Spectroscopy

- Resistance near equilibrium gives indication of electrode activity
- 0 ± 10 mV, 1 MHz 100 mHz

Pt | CsH₂PO₄ | Pt Symmetric Cells

- Environmental conditions
 - 200-250 °C
 - 0.06 0.5 atm H₂
 - 0.3 0.5 atm H₂O
- CsH₂PO₄: phase transformation
 - Generation of microcracks
 - Crack length density: 9 \pm 4 mm/mm²

