

2269-11

Workshop on New Materials for Renewable Energy

17 - 21 October 2011

SOLAR CELLS (Solar-driven thermochemical dissociation of Co2 and H2O using ceria)

> Sossina M. HAILE California Institute of Technology Steele Laboratories, Materials Science Pasadena U.S.A.

Solar-Driven Thermochemical Dissociation of CO_2 and H_2O Using Ceria

Sossina M. Haile Materials Science / Chemical Engineering California Institute of Technology

"Capture and Conversion of CO_2 into Sustainable Fuels" April 14-15, 2011; Riso, Denmark

Using the Sun to Make Fuels

Solar electricity
 + electrolysis

• Separate components

- $H_2 O \rightarrow H_2 + \frac{1}{2}O_2 \qquad CO_2 \rightarrow CO + \frac{1}{2}O_2$
 - Photolysis

- Low CO₂ solubility
- Poor product selectivity
- Non-aqueous electrolyte
- Material corrosion
- Precious metal catalysts, poor rates
- Poor use of solar spectrum

Thermolysis
 H₂
 O₂
 O₂

 H_2O

- Reaction at > 4,000 °C
- Requires separation

Direct Thermolysis

- Slightly easier for CO₂ dissociation than H₂O
- But still extremely challenging \rightarrow multi-step reaction schemes

Metal Oxide Solar Thermochemical Cycle Thermal Reduction/ **Oxidation/Fuel Production Oxygen Release** Μ H_2O MO H_2 T_H

- Integrated solar capture and fuel production
- Oxygen and fuel produced in separate steps
- Challenges due to structural change & volatilization
- Fuel largely limited to hydrogen

State-of-the-Art

- Difficult Zn capture
 - Quench step required
- Slow oxidation kinetics

 $Zn + H_2O \rightarrow ZnO + H_2$

 $NiFe_2O_4 / Ni_{1/3}Fe_{2/3}O_4$

- Solid state transformation
 T_H ~ 1400°C
- Two distinct solid phases

- Slow kinetics
 - Slow oxygen diffusion
 - Slow surface reaction
- Kinetics worsen
 - Loss of porosity (sinter)

Metal oxide releases/incorporates oxygen No phase change, large nonstoichiometry range Rapid kinetics: bulk diffusion, surface reaction

THE REAL PROPERTY OF THE REAL

Ideal candidate: Ceria, $CeO_{2-\delta}$

Ceria thermochemical cycle

 $CeO_2 \rightarrow CeO_{2-\delta} + \frac{\delta}{2}O_2$

 $\delta H_2 O + CeO_{2-\delta} \rightarrow \delta H_2 + CeO_2$

- Thermodynamics well-known
- Extremely refractory: T_m = 2477 °C, non-volatile

$Ce_2O_3 - CeO_2$ Phase Diagram

- Phase extent of fluorite unknown
- Favored at high T
- Favored by doping
- Ignore Ce_nO_{2n-m} ordered phases

G. Adachi and N. Imanaka, *Chem. Rev.*, **98**, 1479-1514 (1998).

Thermodynamic Oxidation State

Can compute δ (T, pO_2) from material thermodynamic parameters

Predicted Oxygen Release / Fuel Production

A CONNECTION OF THE PARTY OF TH

Both bulk and surface kinetics can influence fuel production rate

Progressive Demonstration

- Conventional Electric Furnace
 - Analysis by gas chromatography (quantitative)
 - Moderate temperatures, slow ramp rates
 - Surrogate reduction step using hydrogen
- IR Imaging Furnace
 - Analysis by mass spectrometry (rapid)
 - High temperatures and high ramp rates
 - Reduce under realistic gas conditions
- Solar Simulator Furnace
 - Almost direct fuels from sunlight
 - Exhaust gases to gas chromatograph
 - Challenging thermal design

Thermochemical Cycling

 Yield matches theoretical value of 8 mL H₂ per gram ceria

- Flow H₂:flow O₂ always 2:1
- \Rightarrow all of the $\delta_{\rm H}$ created is utilized in fuel production ($\delta \rightarrow 0$ at $T_{\rm L}$)

Rate Limiting Step

 $pH_2O = 0.023$ atm, FR_{tot}= 200 sccm g⁻¹_{SDC} 6 neat ceria 750 °C ceria H₂ Rate (sccm g⁻¹_{ceria}) with 2 wt% Rh 5 4 3 2 ceria $\left(\right)$ 2 8 10 0 6 4 Metal Catalyst t (min)

Catalyst improves kinetics \rightarrow surface limited process

 $pH_2O = 0.064 \text{ atm}, FR_{tot} = 380 \text{ sccm } g^{-1}_{SDC}$

 $pCO_2 = 0.032$ atm, FR_{tot}= 300 sccm g⁻¹_{SDC}

Complete utilization of ceria non-stoichiometry for fuel production

SDC = samaria doped ceria

Fuel Production Rates

Rate depends on gas species \rightarrow confirms surface reaction limited

Making Syngas

 $pH_2O = 0.132 \text{ atm}, pCO_2 = 0.066 \text{ atm}, FR_{tot} = 40 \text{ sccm } g^{-1}_{SDC}, 900 \text{ °C}$

Complete utilization of ceria nonstoichiometry

Measured Fuel Composition

100% syngas selectivity – no methane produced

Operating on Photons Swizterland in March

Collaboration with Aldo Steinfeld, ETH Zurich and the Paul Scherer Institute

1,500 sun concentration

CO_2 dissociation

H₂O dissociation

Impact of Thermal Management

Heat losses in solar reactor have major detrimental impact on efficiency

$$\eta = \eta_{solar-thermal} \times \eta_{thermal-fuel} = \eta_{solar-thermal} \times \frac{285.8kJ}{\Delta H_{input}}$$

$$\Delta H_{input} = \begin{array}{ccc} \text{Boil and heat} & + & \text{Heat ceria} & + & \text{Reduce} \\ \text{water to } T_{L} & & \text{from } T_{L} \text{ to } T_{H} & & \text{ceria} \end{array}$$

Influence of Cycling Parameters

Analysis ignores potential of heat recovery

Actual Reactor Efficiency

$$\eta = \frac{r_{fuel} \Delta H_{fuel}}{P_{solar} + r_{inert} E_{inert}}$$

Estimate at 0.5 to 1%

- Reactor heat-up is slow $\Rightarrow P_{solar}$ is large
 - Heat loss through insulation
 - Re-radiation losses through quartz window
- Material keeps up with heating rate
 - Immediate efficiency improvements from better reactor design
 - No need to enhance surface reaction rates
- Material with lower temperature cycling
 - Would ease requirements on reactor design

~ 40 MT world reserve

Conclusions & Challenges

Conclusion: Ceria works really, really well!

Scientific Challenges

Thermodynamic measurements at very high temp

Engineering Challenges

- Thermal management
- How to flush high temperature oxygen?
- Efficiency (cost!) tied to $\Delta\delta$

Grand Challenge

- Design of new materials
 - Wider nonstoichiometry range (CeO₂-ZrO₂ solid solutions)
 - Maintain structural stability, non-volatility?

Acknowledgments

- William, Danien, Yong
- Aldo Steinfeld & students
- National Science Foundation

- Gordon and Betty Moore Foundation
 - Caltech Center for Sustainable Energy Research
- eSolar (Philip Gleckman)
- W.C. Chueh and S. M. Haile, "Ceria as a Thermochemical Reaction Medium for Selectively Generating Syngas or Methane from H₂O and CO₂," *ChemSusChem*, **2**, 735-769 (2009).
- W. C. Chueh and S. M. Haile, "A Thermochemical Study of Ceria: Exploiting an Old Material for New Modes of Energy Conversion and CO₂ Mitigation," *Phil. Trans. R. Soc.* **368**, 3269-3294 (2010).
- W.C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile and A. Steinfeld, "High-Flux Solar-Driven Thermochemical Dissociation of H₂O and CO₂ Using Nonstoichiometric Ceria," *Science*, 330, 1797-1801 (2010).

