

The Abdus Salam International Centre for Theoretical Physics

2269-2

Workshop on New Materials for Renewable Energy

17 - 21 October 2011

Quantum chemcial characterization of homogeneous catalytic processes for water splitting and Co2 reduction

Christopher J. CRAMER

University of Minnesota Dept. of Chemistry and Supercomputer Institute Minneapolis U.S.A.

Quantum Chemical Characterization of Homogeneous Catalytic Processes for Water Splitting and CO₂ Reduction

CHEMISTRY

Christopher J. Cramer

Trieste, October 19, 2011

Conversion of Solar Energy to Green Fuel Schematic of the Dye-Sensitized Solar Cell

Sens, C.; Romero, I.; Rodriguez, M.; Llobet, A. et al., J. Am. Chem. Soc., 2004, 126, 7798 Sala, X.; Romero, I.; Rodriguez, M.; Escriche, L.; Llobet, A. Angew. Chem. Int. Ed. 2009, 48, 2842

Mechanism of Water Oxidation Catalysis

Activation enthalpy too high to be mechanistically viable (predict 32.5 kcal/mol, expt measured as 23.1 kcal/mol)

Proposed pathway following protonation of activated catalyst

PCM/B3LYP: Yang and Baik, JACS 2008, 130, 16231

Catalytic Cycle Energies (kcal/mol)

The elec	tronic stru	cture of	[4,4] ³⁺	
1. 2.	Ground state? Ru ^{III}	-O spins lo coupled	ocally of triplet	
	Q	$S_0(AF)$	S ₁ (CS)	Т
CASSCF	-0.8	0	26.5	-0.8/13.5
CASPT2	0.5	0	32.5	0.7/16.6
DFT/B3LYP	-0.8	0	44.8	7.2
DFT/M06L	-1.0	0		9.3

Q: 82 % weight

 $S_0: 15 \% AF + mixture of 4 different closed-shell config. (15 % weight each) <math>S_1: 43 \% CS + 11 \% AF + some other CS config. with ~5 % weight each T: two degenerate + 1 lower in energy: strongly multireference character$

O-O bond formation facilitated by spin coupling

A Mononuclear Case

Not originally recognized as a water splitting catalyst owing to decomposition in situ to RuO_2 - Llobet et al. identify O_2 evolution from oxidation of cis aquo – mechanism?

Mechanistic Quantification (kcal/mol)

15.7

Oxidation State of Ru?

Note that XAS figure presupposes its own conclusion, by pinning data points to formal oxidation numbers...

4 = dihydroxo 5 = hydroxo/oxo

Planas et al. Inorg Chem. in press.

Unreactive trans Species Generated from Photoisomerization

Unreactive trans Species Generated from Photoisomerization

Something Besides Water Splitting

Hydrogenative CO₂ Reduction

Hydrogenative CO₂ Reduction

R = -COOEt or -OMe

Hydrogenative CO₂ Reduction

Proposed Catalytic Cycle

Computational Details

Density Functional Theory (Gaussian09)

M06-L Functional (Meta-GGA)

	Opt.	Single Point
Ru	SDD (ECP28MWB)	SDD (ECP28MWB)
Н, С, О	6-311G(d,p)	
Polypyridyl Ligands	MIDI!	6-311G+(2df,p)

SMD continuum solvation model (Solvent=2,2,2-TriFluoroEthanol)

All stationary points were verified by analytic computation of vibrational frequencies

Mononuclear CO₂ Reduction Catalysts

[Ru^{II}(H)(bid)(bpy)]

ΔG[‡]=19.0

Mononuclear CO₂ Reduction Catalysts

R = -OMe

< [Ru^{II}(H)(bid)(bpy)]

ΔG[‡]=20.1

ΔG[‡]=19.0

Dinuclear CO₂ Reduction Catalysts

 $[(Ru^{II})_2(\mu-bbp)(trpy)_2(H)(CO_2)]^{2+}$

 $[(Ru^{II})_2(\mu-bbp)(bid)_2(H)(CO_2)]$

Dinuclear CO₂ reduction catalysts

 $[(Ru^{II})_{2}(\mu-bbp)(trpy)_{2}(H)(CO_{2})]^{2+} < [(Ru^{II})_{2}(\mu-bbp)(bid)_{2}(H)(CO_{2})]$

 $\Delta G^{\ddagger}=22.4$

OK, Back to Water Splitting...

A Catalyst With a Supported Earth-abundant Metal

rate-determining step ~20 kcal/mol

Figure 2. (A) Plots of O_2 evolution with time for different [5] upon addition of $(NH_4)_2Ce(NO_3)_6$ (145.7 μ mol) in water (0.8 mL); the theoretical O_2 yield was 36.4 μ mol. (B) Initial rates of WO plotted against [5].

Ellis, McDaniel, Bernhard, and Collins J. Am. Chem. Soc. 2010, 132, 10990

A Catalyst With a Supported Earth-abundant Metal

Oxygen Activation Dr. Ben Gherman Dr. Abdul R. Moughal Shahi Dr. Stefan Huber Dr. Patrick Donoghue Dr. Joe Scanlon David Heppner

Acknowledgments

Water Splitting/CO₂ Activ. Dr. Pere Miró Dr. Tanya Todorova Zahid Ertem Nora Planas Stuart Kohl

Senior Collaborators Prof. Laura Gagliardi (Geneva/Minnesota) Prof. Shinobu Itoh (Osaka) Prof. Antoni Llobet (ICIQ) Prof. Piotr Piecuch (MSU) Prof. Bill Tolman (Minnesota)

