

The Abdus Salam International Centre for Theoretical Physics

2269-23

Workshop on New Materials for Renewable Energy

17 - 21 October 2011

Non-equilibrium dynamics of photoinduced proton-coupled electron transfer

Alexander V. SOUDACKOV Dept. of Chemistry, Pennsylvania State University University Park U.S.A. The Abdus Salam International Centre for Theoretical Physics

Theoretical Modeling of Proton-Coupled Electron Transfer Reactions in Energy Related Materials

PENNSTAtexander V. Soudackov Pennsylvania State University

WORKSHOP ON NEW MATERIALS FOR RENEWABLE ENERGY 17-21 October 2011, ICTP, Miramare, Trieste, Italy

Contributors

Sharon Hammes-Schiffer

Sarah Edwards Model PCET studies

Michelle Ludlow Os-complex on Gold electrode

Jonathan Skone Electron-proton adiabaticity

Liz Hatcher PCET in lipoxygenase

Navrotskaya Anderson-Newns Hamiltonian for PCET

Charulatha Venkataraman Interfacial PCET rate constants

Andrew Sirjoosingh Diabatization methods in PCET

3

Random Facts about Penn State...

- Largest* alumni base in the world
 - Total Alumni: **557,331** (165,182 registered)

• Notable alumni

- **Paul Berg** '48, '52g Nobel Prize winner in Chemistry (1980): "for his fundamental studies of the biochemistry of nucleic acids, with particular regard to recombinant-DNA"
- Jef Raskin '67g credited with being the father of the Macintosh computer

*unofficial and widely debated data

Outline

- Motivation and relevance
- General model for PCET
 - four-state model and reduced two-state model
 - vibronic free energy surfaces generalized Marcus model
- Non-adiabatic PCET rate constant
 - Fermi Golden Rule formulation
 - Effects of proton donor-acceptor vibrational mode
- Free energy relationships and kinetic isotope effects
- Elecron-proton adiabaticity: HAT vs. PCET
- Electrochemical PCET
- Concluding remarks

PENNSTATE

 $\mu(1 + R)$ $V_{\alpha} = \cdot$ 1811 PENNSTATE - 100 B = 0² coso $+ h_{II}(r_{II_1}^3 - r_{II_1}^3) + h_{III}(r_{III_1}^3 - r_{III_1}^3)$ $V_{o} = \frac{d_{\pi}^{2} \cdot (\gamma_{a} - \gamma_{B})g}{18}$ io vili. $\sum_{\substack{2:G_1 - (l_1 + l_2)^{-a} \\ 102 \cdot D_1}} \omega = \frac{2(l + \mu)}{\mu(l + R)} \cdot \pi \cdot \sqrt{\frac{g}{2c_0}}$ $\omega = \frac{2(1 + \mu)}{2}$ $\frac{d_u}{2}(G_{\varepsilon}+G_u)+f_2\cdot G_u\cdot R_{\varepsilon}+0,3\cdot G_u\cdot R_{\varepsilon}$ $M_{con} = j$ L = 150. "2b, or not 2b: that is the $\omega = \frac{2(1+\mu)}{\mu(1+R)} \cdot \pi \cdot \sqrt{\frac{g}{2e}} \quad N_{\mu\nu} = \frac{2 \cdot G_k \cdot (1+R)}{1}$ COSID R= Ling all. William Shakespear (1564-1616) l - Rγ_s)g $V_{\alpha} = \frac{d_{\alpha}^2 \cdot (\gamma_{\alpha})}{2}$ Hamlet, Act III, Scene 1 $\omega = \frac{2(1 - \omega)}{2}$ μQ -D2)FM $4 \cdot V$ $D_{q} = 0.85$ cosp u21 $\omega = \frac{2(1 + \mu)}{\mu(1 + R)} \cdot \pi$ $\pi \cdot (h_1 + h_2)$ $\omega = \frac{2(l + \mu)}{\mu(l + R)}$ $\gamma = \frac{1}{n} \cdot \left[\tilde{h}_{11}(r_{21}^{-1} - r_{11}^{-1}) + \tilde{h}_{21}(r_{21}^{-1} - r_{21}^{-1}) + \tilde{h}_{121}(r_{221}^{-1} - r_{221}^{-1}) \right]$ $E = \frac{\pi \cdot g}{\omega^2 \cos \varphi} \frac{1 - R}{1 + R}$ $\mu (1 -$ <u>)</u>g $A^{2} \cdot (\gamma_{-} - \gamma_{B})g_{-} = \frac{15\pi \cdot n \cdot (D_{1}^{2} - D_{2}^{2})F_{W}}{L}$ 0=30+" 2(1+µ) _____g

Vibronic states are obtained by diagonalizing the Hamiltonian in the appropriate electron-proton vibronic basis

• non-equilibrium (photoinduced) PCET may require four-state model to properly describe proton vibrational relaxation

22

- Free energy barriers
- Vibronic couplings (proton vibrational overlaps)

1 8 5 5

Effects of proton donor-acceptor vibrational

$$L_{m} = I_{s} + I_{R} + I_{m}^{(a)}; \qquad I_{R} = \frac{1}{2}MW^{2}dR^{2}; \qquad I_{m}^{(a)} = \frac{h^{2}a_{m}^{2}}{2M}$$

High-temperature (low frequency) $\lim(t \Omega \ll k_{\rm B}T)$

$$k^{\text{PCET}} = \frac{2p}{h} \hat{A}_{m} P_{\text{I}m} \hat{A}_{n} (4pL_{m}k_{\text{B}}T)^{-1/2} |V_{m}(R_{0})|^{2} \exp\left[\frac{k_{\text{B}}T}{MW^{2}}\right] \exp\left[\frac{k_{\text{B}}T}{4L_{m}k_{\text{B}}T}\right] + \frac{2a_{m}dRk_{\text{B}}T}{4L_{m}k_{\text{B}}T}\right]$$

Low-temperature (high frequency) $\lim(t_{\Omega} \gg k_{\rm B}T)$

$$k^{\text{PCET}} = \frac{2p}{h} \hat{A}_{m} P_{1m} \hat{A}_{n} (4pl_{s}k_{\text{B}}T)^{-1/2} |V_{m}(R_{0})|^{2} \exp\left[\frac{\hat{F}_{m}(a) - I_{R}}{hW} - a_{m}cR\right] \exp\left[\frac{\hat{F}_{m}(a) - I_{R}}{4I_{s}k_{\text{B}}T}\right]$$

Applications

System	Experiment	Theory
Amidinium-carboxylate salt bridges	Nocera	JACS 1999
Iron bi-imidazoline complexes	Mayer/Roth	JACS 2001
Ruthenium polypyridyl complexes	Meyer/Thorp	JACS 2002
DNA-acrylamide complexes	Sevilla	JPCB 2002
Ruthenium-tyrosine complex	Hammarström	JACS 2003
Soybean lipoxygenase enzyme	Klinman	JACS 2004,
Rhenium-tyrosine complex	Nocera	JACS 2007
Quinol oxidation	Kramer	JACS 2009
Osmium aquo complex/SAM/gold	Finklea	JACS 2010

Electron-Proton adiabaticity: HAT vs.

Classification based on the vibronic coupling calculation?

Georgievskii, Stuchebrukhov (2000): $V_{DA} = kV_{DA}^{(ad)}$, $k = \sqrt{2pp} \frac{\exp{\frac{p}{p}\ln p} - p}{G(p+1)}$

Electronically non-adiabatic PT:

$$p = \frac{t_{\rm p}}{t_{\rm el}} = 1: \quad V_{DA} \not \in V_{DA}^{\rm (na)} = V^{\rm el} \left\langle j \stackrel{(1)}{_D} \middle| j \stackrel{(11)}{_D} \right\rangle$$

[*p* – adiabaticity parameter (semiclassical)]

Electronically adiabatic PT:

$$p = \frac{t_p}{t_el}$$
? 1: $V_{DA} \not\in V_{DA}^{(ad)} = \frac{D}{2}$

[Skone, Soudackov, SHS, JACS 2006]

- reaction can be easily controlled through the electrode potential
- measurements are performed using nondestructive techniques (e. g. cyclic voltammetry)
- measurable observables (current density) are directly related to the elementary act (no need to isolate the ET/PCET step)
- reactive species can be chemically attached to the electrode surface (e. g. via SAM) – fixed ET distance and no double layer effects
- realatively easy to measure kinetic isotope effects (KIE) reliable probe for "PC" part in "PCET"

creasing

[Venkataraman, Soudackov, Hammes-Schiffer: J. Phys. Chem. C

VL-10

Electrochemical PCET: nonadiabatic

Oxidation (anodic) and reduction (cathodic) transition probabilities:

$$W_{M,ESC^{+}}(x,e) = \frac{1}{h} \hat{A}_{mn} P_{m} |V_{mn}^{0}(x,e)|^{2} \exp\left[\frac{\hat{E}^{2}k_{B}Ta_{mn}^{2}}{MW^{2}} - 2a_{m}dR\right] \sqrt{\frac{p}{k_{B}TL_{m}}} + \frac{1}{k_{B}TL_{m}} + \frac{$$

Reduced solute complex:
$$A_e^{\$} \cdots D_p^{\$} H \cdots A_p$$

 $R_0^{||} H \cdots R_0^{||} A_e^{||} A_p^{||} A_p^{||}$
Oxidized solute complex: $A_e^{\bullet} \cdots D_p$ $\cdots H A_p^{||}$

-

× 1000

Electrochemical PCET: current densities

- Exponential dependence of the coupling on the distance *x* to the electrode surface (for nonadiabatic ET $\beta' \approx 1 \text{ Å}^{-1}$)
- Gouy-Chapman-Stern model: low electrolyte concentrations, large Debye length $(\beta' \gg \kappa)$ current is dominated by PCET at the outer

 ψ – potential at outer Helmhotz plane

$$j_{a}(h) = F \underbrace{\bigcup_{x_{H}}}_{x_{H}} dx C_{SC}(x) k_{a}(x,h) \stackrel{a}{=} F C_{SC}^{\infty} \frac{k_{a}(x_{H},h)}{b^{\ddagger}} e^{-zbey}$$
$$j_{c}(h) = F \underbrace{\bigcup_{x_{H}}}_{x_{H}} dx C_{SC^{+}}(x) k_{c}(x,h) \stackrel{a}{=} F C_{SC^{+}}^{\infty} \frac{k_{c}(x_{H},h)}{b^{\ddagger}} e^{-(z+1)bey}$$

[Venkataraman, Soudackov, Hammes-Schiffer: J. Phys. Chem. C 2008]

Electrochemical PCET: transfer

• defined via logarithmic derivative of the cathodic current density

$$a_{\text{PCET}}(h) = -\frac{1}{k_{\text{B}}T} \frac{d \ln j_{\text{c}}(h)}{d(eh)}$$

• approximate expression

- (ignore the effects of the excited vibronic states)
- (assume that electron transfers only to/from the Fermi level)

$$a_{\text{PCET}}(h)^{a} \frac{1}{2} - \frac{k_{\text{B}}Ta_{00}dR}{L} + \frac{eh}{2L}$$

PENNSTATE

1 8 5 5

• deviation from standard value of 1/2: due to different equilibrium proton donor-acceptor distances in reduced and oxidized solute

1 8 5 5

Electrochemical PCET: main features

- Observable kinetic isotope effects (KIE) (up to ~4 reported)
- Different "effective" temperature dependent activation energies for cathodic and anodic processing of the order of a few kcal/ mol)

 transfer coefficient deviates from 0.5:

$$\alpha_{\rm PCET}(\eta) \approx \frac{1}{2} - \frac{\alpha_{00}\delta R}{\beta\Lambda_{00}} + \frac{e\eta}{2\Lambda_{00}}$$

1 8 5 5

Electrochemical PCET: application

[Os^{II}(bpy)₂(4-aminomethylpyridine)(H₂O)]²⁺ attached to a mixed self-assembled monolayer on a gold electrode

Experimental data [Madhiri, Finklea: Langmuir 2006]

1 8 5 5

Electrochemical PCET: application

 $[Os^{II}(bpy)_2(4-aminomethylpyridine)(H_2O)]^{2+}$ attached to a mixed self-assembled monolayer on a gold electrode

Experimental data [Madhiri, Finklea: Langmuir 2006]

concerted PCET mechanism (data incompatible with the stepwise model)

 $Os^{III}(OH) + e^{-} \acute{E} Os^{II}(OH)$

 $Os^{III}(H_2O) + e^{-} \acute{E} Os^{II}(H_2O)$

 $+ H^{+}$

+ H⁺

1 8 5 5

Electrochemical PCET: application

 $[Os^{II}(bpy)_2(4-aminomethylpyridine)(H_2O)]^{2+}$ attached to a mixed self-assembled monolayer on a gold electrode

Experimental data [Madhiri, Finklea: Langmuir 2006]

- concerted PCET mechanism (data incompatible with the stepwise model)
- Kinetic isotope effect KIE \approx 2 at pH \sim 4 \Rightarrow proton acceptor: COO⁻ group (SAM) with pK_a \approx 5
- asymmetric Tafel plot with higher anodic currents (suggested two different reorganization energies for cathodic and anodic processes)

 $Os^{II}(OH) + e^{-} \acute{E} Os^{II}(OH)$

 $Os^{III}(H_2O) + e^{-} \acute{E} Os^{II}(H_2O)$

 $+ H^{+}$

 $+ H^{+}$

1 8 5 5

Electrochemical PCET: application

 $[Os^{II}(bpy)_2(4-aminomethylpyridine)(H_2O)]^{2+}$ attached to a mixed self-assembled monolayer on a gold electrode

Experimental data [Madhiri, Finklea: Langmuir 2006]

- concerted PCET mechanism (data incompatible with the stepwise model)
- Kinetic isotope effect KIE ≈ 2 at pH $\sim 4 \Rightarrow$ proton acceptor: COO⁻ group (SAM) with pK_a ≈ 5
- asymmetric Tafel plot with higher anodic currents (suggested two different reorganization energies for cathodic and anodic processes)
- Observed strong potential dependence of the transfer coefficient (0.2–0.8) (non–linear free energy relationship): $\alpha(0) = 0.46 \pm$

 $Os^{II}(OH) + e^{-} \acute{E} Os^{II}(OH)$

 $Os^{III}(H_2O) + e^{-} \acute{E} Os^{II}(H_2O)$

 $+ H^{+}$

 $+ H^{+}$

1 1 2 2

Electrochemical PCET: application

Theoretical modeling: input parameters

- DFT (B3LYP) calculations of optimized geometries and proton profiles for reduced and oxidized Os complexes: $\delta R_{O-O} = +0.17 \text{\AA}$ (reduced: 2.49 Å and oxidized: 2.66 Å)
- proton vibrational wavefunctions generated using Fourier Grid Hamiltonian method

Electrochemical PCET: application

Theoretical modeling: no fitting to experimental data!

- reproduced asymmetric Tafel plot
- calculated transfer coefficient $\alpha(0) = 0.47$ (c.f. experimental value of 0.46 ± 0.02)

$$a_{\text{PCET}}(0) = \frac{1}{2} - \frac{k_{\text{B}}Ta_{00}dR}{L}$$

- calculated KIE for the standard rate constant: KIE ~ 2.0 (c.f. experim. value of KIE ~ 2)
- ruled out H₂O as proton acceptor: $\delta R < 0$

• Experiment $(k_s = 0.92 \text{ s}^{-1})$ - Theory 4^{-1} 3^{-1} 2^{-1} 1^{-1} 0^{-1} 0^{-1} 0^{-1} 1^{-1} 0^{-1} 1^{-1} 0^{-1} 1^{-1} 0^{-1} 1^{-1} 1^{-

43

Photoinduced PCET dynamics!

