

2269-17

Workshop on New Materials for Renewable Energy

17 - 21 October 2011

Ru-based water oxidation catalysts

Xavier SALA UAB Barcelona Spain

Ru-Based Water Oxidation Catalysts

ICTP, Miramare, Trieste, October 19th 2011 Xavier Sala, UAB, Barcelona, Spain

- 1. INTRODUCTION
- 2. DINUCLEAR HOMOGENEOUS WOCs
- 3. DINUCLEAR HETEROGENEOUS WOCs
- 4. TETRANUCLEAR HOMOGENEOUS WOCs
- 5. MONONUCLEAR WOCs: the $[Ru(bpy)_2(H_2O)_2]$ case
- 6. CONCLUSIONS

Predicted Increase of the World's Energy Demand

Impact of Anthropogenic CO₂ on the Planet

URGENT NEED OF SUSTAINABLE ENERGY SOURCES

Exhausting profiles of oil products, 2004, Exxon-Mobile.

Solar Energy Utilization Workshop, 2005, US-DOE, Washington DC.

A. Menzel et al. Global Change Biology, 2006, 12, 1-8.

i

Available Renewable Energy

Global Energy Consumption 2008

O. Morton et al. *Nature*, **2008**, *454*, 816.

BP Statistical Review of World Energy, 2009.

INTRODUCTION - Water Splitting and PEC Cells

1 Sala, X.; Escriche, Ll.; Llobet, A. Angew. Chem. Int. Ed., 2009, 48, 2-13

N

Ru^{IV} stabilization

INTRODUCTION - The Ru=O Group

4,4'-R2-bpy

R=H,bpy R=NH₂,b-NH₂ R=NO₂,b-NO₂

[(tpm)(bpy)Ru-OH₂]²⁺

(i)

Llobet, A. Inorg. Chim. Acta 1994 221, 125-131.

Llobet, A. Inorg. Chim. Acta 1994 221, 125-131.

(i)

(i)

 $E_{1/2}$ (V vs SSCE) at pH = 7.0

Llobet, A. Inorg. Chim. Acta 1994 221, 125-131.

(i)

 $E_{1/2}$ (V vs SSCE) at pH = 7.0

Llobet, A. Inorg. Chim. Acta 1994 221, 125-131.

(i)

• 2-electron vs. 1-electron oxidation \implies SELECTIVITY

Masllorens, E.; Llobet, A. et al. J. Am. Chem. Soc. 2006, 128, 5306.

Che, C.-M. et al. J. Org. Chem. 1998, 63, 7715

Concepcion, J. J.; Meyer, T. J. et al. J. Am. Chem. Soc. 2008, 130, 16462 Concepcion, J. J.; Meyer, T. J. et al. J. Am. Chem. Soc. 2010, 132, 1545 INTRODUCTION - The Ru=O Group and WO

$H_2O-^{II}Ru - BL - Ru^{II}-OH_2$

Electronic Coupling between Ru Interactions Through Space

- 1. INTRODUCTION
- 2. DINUCLEAR HOMOGENEOUS WOCs
- 3. DINUCLEAR HETEROGENEOUS WOCs
- 4. TETRANUCLEAR HOMOGENEOUS WOCs
- 5. MONONUCLEAR WOCs: the $[Ru(bpy)_2(H_2O)_2]$ case
- 6. CONCLUSIONS

HOMOGENEOUS WOCs: Ru-Hbpp complexes

Gestern, S. W.; Samuels, G. J.; Meyer, T. J. J. Am. Chem. Soc., **1982**, 104, 4029 Gilbert, J. A.; Eggleston, D. S.; Meyer, T. J. et al. J. Am. Chem. Soc., **1985**, 107, 3855

HOMOGENEOUS WOCs: Ru-Hbpp complexes

1 mM Cat/100 mM Ce(IV)/0.1 M triflic acid/RT

Gilbert, J. A.; Eggleston, D. S.; Meyer, T. J. et al. *J. Am. Chem. Soc.*, **1985**, *107*, 3855 Sens, C., Llobet, A., *J. Am. Chem. Soc.*, **2004**, 126, 7798

DINUCLEAR WOCs: Ru-Hbpp complexes - O-O bond formation

O-O Coupling Pathways

(i)

T. J. Meyer et al., *Inorg. Chem.* **2003**, *42*, 8140.

HOMOGENEOUS WOCs: Ru-Hbpp complexes: O-O bond formation

O₂-evolution: cat with no labeling, solvent with O¹⁸

Entry	O ¹⁸ (%)		Exchange	WNA	Intra-I2M	Exp.
1	Cat,	³² O ₂				99,50
2	Solv, 12.00					0,47
3		³⁶ O ₂				0,03

 \square_2 -evolution: labeling the cat O^{16}/O^{18} with H_2O^{16}/H_2O^{18}

Entry	O ¹⁸ (%)		Exchange	WNA	Intra-I2M	Exp.
4	Cat, 16.13	³² O ₂	77.60	74.60	70.34	69.97
5	Solv, 11.90	34 O ₂	21.00	14.50	27.05	27.48
6		³⁶ O ₂	1.40	1.90	2.61	2.55

HOMOGENEOUS WOCs: Ru-Hbpp complexes: O-O bond formation

11 Romain, S.; Sala, X.; Llobet, A. et al. J. Am. Chem. Soc. 2009, 131, 2768-2769

Romain, S.; Sala, X.; Llobet, A. et al. *J. Am. Chem. Soc.* **2009**, 131, 2768-2769 Bozoglian, F.; Romain, S.; Llobet, Cramer, C.; Gagliardi, L. et al. *J. Am. Chem. Soc.* **2009**, 131, 2768-2769

i

HOMOGENEOUS WOCs: Ru-Hbpp complexes - Dynamic Behavior

Rigid Molecule: NO dynamic behavior

Flexible Molecule: dynamic behavior

HOMOGENEOUS WOCs: Ru-Hbpp c<omplexes - Dynamic Behavior

AB

HOMOGENEOUS WOCs: Ru-Hbpp complexes - Dynamic Behavior

HOMOGENEOUS WOC: Ru-Hbpp complexes - Dynamic Behavior

1 Planas, N.; Maseras, F.; Sala, X.; Llobet, A. et al. Chem. Eur. J. 2010, 1(3), 284.

Favors intra-izm 0-0 coupling

1 Planas, N.; Maseras, F.; Sala, X.; Llobet, A. et al. Chem. Eur. J. 2010, 1(3), 284.

HOMOGENEOUS WOC: Ru-Hbpp complexes: O-O bond formation

1 Mola, J, Sala, X. Llobet, A. Dalton Trans., 2010, 40, 3640

HOMOGENEOUS WOC: Ru-Hbpp complexes: O-O bond formation

1 Mola, J, Sala, X. Llobet, A. Dalton Trans., 2010, 40, 3640

- 1. INTRODUCTION
- 2. DINUCLEAR HOMOGENEOUS WOCs
- 3. DINUCLEAR HETEROGENEOUS WOCs
- 4. TETRANUCLEAR HOMOGENEOUS WOCs
- 5. MONONUCLEAR WOCs: the $[Ru(bpy)_2(H_2O)_2]$ case
- 6. CONCLUSIONS

HETEROGENEOUS WOC: toward a PEC for H₂ production

HETEROGENEOUS WOC: Immobilization strategies

HETEROGENEOUS WOC: Ru-Hbpp complexes: Immobilization strategies

Ru-Hbpp complexes: immobilization - ELECTROPOLYMERIZATION

1 Angew. Chem. Int. Ed. 2008, 47, 5830-5832

Ru-Hbpp complexes: immobilization - ELECTROPOLYMERIZATION

1 Angew. Chem. Int. Ed. 2008, 47, 5830-5832

Ru-Hbpp complexes: immobilization - ELECTROPOLYMERIZATION

① Angew. Chem. Int. Ed. 2008, 47, 5830-5832

Ru-Hbpp complexes - IMMOBILIZATION STRATEGIES

Ru-Hbpp complexes: immobilization - COVALENT ANCHORING

Solid Support = TiO₂

Lligand Modification

[Ru₂(bpp)(trpy)₂(OH₂)]²⁺

Ru-Hbpp complexes: anchoring strategies - COVALENT ANCHORING

Ru-Hbpp complexes: - Covalent anchoring - WATER OXIDATION

Ru-Hbpp complexes: - Covalent anchoring - WATER OXIDATION

120

- 1. INTRODUCTION
- 2. DINUCLEAR HOMOGENEOUS WOCs
- 3. DINUCLEAR HETEROGENEOUS WOCs
- 4. TETRANUCLEAR HOMOGENEOUS WOCs
- 5. MONONUCLEAR WOCs: the $[Ru(bpy)_2(H_2O)_2]$ case
- 6. CONCLUSIONS

 $(Hbpp)_{2}-p-xyl$ $(Hbpp)_{2}-m-xyl = Ru^{II}-trpy = Ru^{II$}

- 1. INTRODUCTION
- 2. DINUCLEAR HOMOGENEOUS WOCs
- 3. DINUCLEAR HETEROGENEOUS WOCs
- 4. TETRANUCLEAR HOMOGENEOUS WOCs
- 5. MONONUCLEAR WOCs: the $[Ru(bpy)_2(H_2O)_2]$ case
- 6. CONCLUSIONS

Sala, X.; Cramer, C.; Gagliardi, L.; Llobet, A. et al. Angew. Chem. Int. Ed. 2010, 49, 7745-7747

(i)

Sala, X.; Cramer, C.; Gagliardi, L.; Llobet, A. et al. Angew. Chem. Int. Ed. 2010, 49, 7745-7747

HOMOGENEOUS WOC: Ru-Hbpp complexes: O-O bond formation

Intra-molecular

Favoured by 32.4 Kcal/mol

- 1. INTRODUCTION
- 2. DINUCLEAR HOMOGENEOUS WOCs
- 3. DINUCLEAR HETEROGENEOUS WOCs
- 4. TETRANUCLEAR HOMOGENEOUS WOCs
- 5. MONONUCLEAR WOCs: the $[Ru(bpy)_2(H_2O)_2]$ case
- 6. CONCLUSIONS

CONCLUSIONS

Ru-Hbpp Homogeneous WOCs

CONCLUSIONS

Ru-Hbpp Heterogeneous WOCs

3 Electropolymerization (VCS / FTO)

CONCLUSIONS

Tetranuclear WOCs

5 O₂/CO₂ ratio

Mononuclear WOCs

6 The $[Ru(bpy)_2(H_2O)_2]$ case : O_2 formation

ACKNOWLEDGMENTS

UdG & ICIQ	UAB	Collaborations
Prof. A. Llobet, ICIQ	Dr. LL. Escriche	F. Maseras, ICIQ
••••••	Dr. J. García-Antón	J. R. Long, UC Berkeley
Dr. I. Romero, UdG	••••••	A. Poater, ICRA
Dr. M. Rodríguez, UdG	L. Francàs	C. Cramer, U. Minnesota
••••••	J. Aguiló	L. Gagliardi, U. Minnesota
C. Sens, UdG	F. Gómez	R. Rocha, LANL
J. Mola, UdG	HaiJie Liu	Z. Freixa, UPB
S. Romain, ICIQ	Rosa González	M. Albrecht, UC Dublin
N. Planas, ICIQ	Selene Gil	
C. Di Giovanni, ICIQ	Jonathan de Tovar	
L. Vigara, ICIQ		
F. Bozoglian, ICIQ		

Dr. J. Benet-Buchholz - X-ray Dr. T. Parella - NMR

FUNDING

Universitat Autònoma de Barcelona ICIQ Foundation, Catalonia

MICINN Spain, General Science Pgr. INTECAT, Consolider Pgr.

PRF Program, ACS USA SOLAR-H2, Energy Prg. UE

Ru Based Water Oxidation Catalysts

ICTP, Miramare, Trieste, October 19th 2011 Xavier Sala, UAB, Barcelona, Spain