2269-22 #### Workshop on New Materials for Renewable Energy 17 - 21 October 2011 3rd Generation Solar Technology. Dyesol approach to DSSC: State of the art and future developments Luca SORBELLO Dyesol Italia, Roma Italy 3rd Generation Solar Technology Prof. Luca Sorbello PhD MA B.Sc. lsorbello@dyesol.com September 2011 # **Company Overview** ## Company Background Dyesol, a solar technology company, engages in the commercialization of dye-sensitized solar cells (DSSC) - Strong IP position with patented materials, equipment and processes for DSSC manufacturing - One of three original DSSC technology licensors; first to focus on steel roof, glass façade and window applications - Founded in 2004 and headquartered in New South Wales, Australia. Listed on ASX in 2005. | Ticker (ASX) | DYE | |------------------------------------|----------| | Price ¹ | A\$0.42 | | Average Volume (3m) | 257,053 | | Market Capitalization ¹ | A\$66.1M | | Shares Outstanding | 157.48M | ¹As of September 7, 2011 ## **Global Footprint** - Global headquarters - Subsidiaries: Germany, Italy, Japan, Korea, Singapore, Switzerland, UK and USA - Representatives, agents or contracts: Abu Dhabi, China, Malaysia, Taiwan and Turkey # Dyesol Italia | R&D | Name | Aim | |----------|----------|---| | | DEPHOTEX | Textile PV | | Projects | MOLESOL | Transparent Conductive material based on Carbon | | Projects | MATERA | TiO ₂ Laser sintering | | | Hi-ZEV | DSC for electric
mobility | | | DyeCell | BIPV | Dyesol italia was founded in 2007 | Collaboration | | |---------------|--| | CNR Perugia | | | CNR Lecce | | | CNR Palermo | | | Commercial | Geographical areas | |--------------------|--------------------| | Materials supplier | | | Equipment supplier | All around Europe | | Technical support | All around Europe | | Consulting | | | Offices | Laboratories | |---------|--------------| | Rome | Near Rome | # Where is Energy Used? Built environment > 45% WW Mobility 17% ## **Annual Greenhouse Gas Emissions by Sector** # BIPV Roofing & Cladding Market World Wide ers in Dye Solar Cell Techi Estimated Completed Roof Accessible Market (@40%), 2021 (M m2) UK 3,534, France 3,393, Germany 4,093 Netherlands 901 Spain 2,166 Rest of EU15 35,510, EU12 22,187, Eastern EU 10,000 USA 44,296, Canada 3,964 India 182,785, S Asia 40,000 China 42,154, East Asia 40,000, SE Asia 40,000 Brazil 25,998 Rest of S America 35,000 SE Asia 47,000, Australasia 3,000 Russia 30,000, North Asia 30,000 Turkey 17,000, West Asia 20,000 North Africa 25,000, Central Africa 10,000, Southern Africa 15,000 ## Total 605 B m² At 5% access per annum, market value is \$600B/annum (Source: IEA, Apropedia, BIPVChina.com, Freedonia, Colors, Dyesol) # **Business Model** Dyesol has a capital efficient, or "capital-light" business model: (1) own technology IP; (2) licenses to manufacturing partners and (3) typically has exclusive materials supply agreements in place: - IP Portfolio: - Portfolio of over 20 interlocking patents and registered designs covering equipment, processes and key materials - Registered in major markets: USA, Japan, EU; selectively in Korea, India, China, Singapore, Australia and South Africa - Global partnering with focus on 5 market sectors: - Steel BIPV - Glass / window BIPV - Automotive/ Flexibles - Electronic applications - Built environment Indoors or BAIPV - Products/Services: - DSSC Materials (~30%+ margin): dye, semiconductor pastes, electrolyte, conductor - DSSC product components - DSSC prototyping and testing equipment - Collaborative and contract R&D - Consulting and training services - Technology upgrades Dyes TiO₂ Paste #### **Building Integrated Photovoltaic (BIPV)** - BIPV is solar cells embedded into building materials used to replace conventional building materials in parts of the building envelope such as the roof, skylights, or facades - In addition to new construction, existing buildings may be retrofitted with BIPV modules - Provides access to multi-\$100 billion target markets # Key Strategic Partners | Partner | Market | Region | Details | |-----------------------------------|---|----------------------|--| | TATA STEEL | Steel / wall
& roof
applications | UK/Global | Fifth largest steel producer in the world Co-develop and commercialise DSC on coil-coated steel £10+ million joint-programme under the Welsh Assembly Government (WAG) contract Production and distribution forecast by FY 2013 | | MERCK | Materials supply | Germany/
Global | World leader in development and manufacture of ionic liquids and electrolytes Co-develop electrolytes for use in DSC | | PILKINGTON Smart Glass SOUTIONS | Part of NSG Group, world's 2nd largest manufacturers of glass and glazing products for building, automotive and specialty glass markets Commercialise DSC on view and non-view glass, utilising Pilkington's TEC series of transparent conductive oxide (TCO) coated float glass and Dyesol's DSC materials Ohio State Third Frontier Fund – US\$ 1 million Development grant confirmed | | | | Singapore Aerospace Manufacturing | Engineering and process solutions | Singapore/
Global | Co-develop proto-type manufacturing facilities for use by Dyesol applications partners Owned by Singapore Government Instrumental in controlling DSC "know-how" | | TECHNOLOGY | | Korea/
Global | Dyesol-Timo is 50/50 JV for development and commercialisation of DSC in Korea Timo Technologies is a listed electronics supplier to large MNCs such as LG | # R&D Around the World Module designs: Dyesol Australia Dyes: Dyesol Australia, CSIRO Australia, NIMS Japan, CNR Perugia (FP7) Optimised TiO₂ paste and layers: Dyesol UK, Dyesol Australia, CNR Palermo Modified TiO₂ – bulk and surface: Dyesol UK + FP7 program **Electrolytes: Dyesol Australia + Merck (Germany + Japan)** Improved counter electrodes: Dyesol UK, Dyesol Australia + QUT (Australia), **ARC** Linkage Conductors: Dyesol UK, Sefar, FP7 Sealants and barriers: Dyesol UK, Dyesol Australia, Dyesol Italia Manufacturing: Dyesol Italia # PV Technology Background ## First Generation - Crystalline Silicon By far the most prevalent bulk material in solar cells. It is separated into multiple categories: monocrystalline, polycrystalline and ribbon silicon. Crystalline silicon cells account for around 90% of the market. The annual growth rate is expected to be 30%. #### Second Generation - Thin Film Semiconductor Categorized by the cell materials: amorphous or nano-crystalline e.g. CdTe. The thin film share, in terms of actual production, was 13.5% in 2010. The expected CAGR is around 25% ## Third Generation - Artificial Photosynthesis, Nanotechnology Third generation PV includes multiple technologies that seek to improve upon first two generations through a combination of cost reduction and increased energy efficiency. #### BOS ■ Frame Energy Payback Time (Years) 3.5 ■ Module 3 2.5 2 1.5 1 0.5 Multi-DSC Thinfilm crystalline (Fe-Poly) **PV Technology** (Sources: ECN & M. Grätzel 2008) **Payback Time** # Comparison between DSC and Silicon Panels Outdoor **Deviation from STC behaviour (British Summer, Shotton site)** # **DSSC Advantages** | | | | | Payback | period (yrs) | | | |-------------|------------|-----------|--------------------------|-----------|-------------------|---------|-------------| | | | | | Stability | World solar enery | | | | Technology | Efficiency | Cents/kwh | Sunlight | (yrs) | consumption | Current | Anticipated | | DSSC | 10~13% | 10.6 | ambient light conditions | 25 | | 0.75 | 0.5 | | Thin Film | 5~13% | 13~18 | direct | 25 | 20% | 3 | 1 | | Crystalline | 15~20% | 16~19.6 | direct | 25 | 80% | 3.5 | 2 | ## **DSSC Material Cost Competitiveness** #### **DSSC** materials The US Spot price in March 2011 for titanium dioxide (TiO₂)/dye is \$1.30-1.44/lb, which represents a **7%** increase from 2010 ## 1ST (Crystalline) and 2nd (TFT) Generation Materials - Spot silicon has risen to between \$1.65 and \$1.72/lb throughout the first quarter of 2011 from \$1.25 to \$1.30/lb this time last year, an increase of 30% - Cadmium telluride (CdTe) is the basis of the largest sector of thin film solar cells. However, with the growing demand for CdTe in producing 2nd generation solar cells, the availability of the rare element tellurium could be a serious problem in a medium term # **DSSC Market Dynamics** Several global companies are participating in developing and commercializing DSSCs in the near future, many of which are Dyesol's existing customers | Company | Region | Product focus | | | | | | | | |---|--|--|--|--|--|--|--|--|--| | Producing | | | | | | | | | | | Dyesol Limited | Australia | R&D, supplier | | | | | | | | | G24 Innovations | UK | R&D, nanotechnology | | | | | | | | | | Upcoming | 7 | | | | | | | | | 3GSolar | Israel | R&D | | | | | | | | | Acrosol | Korea | R&D | | | | | | | | | Aisin Seiki | Japan | Auto & built environment | | | | | | | | | Dyetec Solar(Dyesol-Pilkington JV)
Fujikura | USA/global
Japan | Glass for Buildings and auto
Devices | | | | | | | | | Nissha Printing | Japan | Industrial components, printing solutions | | | | | | | | | NLAB Solar | Sweden | Nanotechnology R&D | | | | | | | | | Oxford Photovotaics Ltd | UK | Solid state manufacturing | | | | | | | | | PECCELL | Japan | University JV R&D | | | | | | | | | Solar Print | England | Printable DSSC devices | | | | | | | | | Solaronix SA (JV with 3GSolar)
Sony Corp
Tata | Switzerland
Japan/global
UK/India/global | Laboratories and companies Devices Steel roofing | | | | | | | | # Indicative material cost For a 100.000 m² production (7MW_p) ## 2010 cost status | Ī | Component | Quantity f | or 100,000 | m² | | Present price | | | | | price | | | | | |---|-----------------------------------|------------|------------|----------------|-------|---------------|--------|---------|-----|---|-------|------------------------|---|-----|---------| | | Dye (N719) | 100 - | 140 | kg | | | 20 | US\$/g | 20 | 4 | 28 | US\$/m ² | < | 10 | US\$/g | | | Ru (N719) | 8.0 - | 11.2 | kg | 6,000 | - | 28,000 | US\$/kg | 0.5 | - | 3.1 | US\$/m² | | Me | t | | | TiO ₂ | 2,000 - | 2,500 | kg | | > | 1,000 | US\$/kg | 20 | - | 25 | US\$/m ² | < | 250 | US\$/kg | | | Electrolyte
(solvent
based) | ~ | 5,000 | kg | | < | 140 | US\$/kg | | ٧ | 7 | US\$/m² | | Met | * | | | Glass/TCO | | 100,000 | m ² | | > | 10 | US\$/m² | | > | 10 | US\$/m ² ** | < | 10 | US\$/m² | | | Pt | 7 | 2 | kg | | > | 48,000 | US\$/kg | | 7 | 1 | US\$/m² | | Me | t | ^{*} Cost reduction required for pure ionic liquid-based electrolytes ^{** &}gt;20 US\$/m² if two glass/TCO substrates are required # A few words on costs - Estimated materials costs for relatively small-scale DSC module production (7MW_p p.a.): 70US\$/m², corresponds to 1\$/W_p @ 7% module efficiency - \$/W_p is inadequate metric for DSC, particularly if mounted on façades - In contrast to Si, DSC efficiencies highest around average sun levels (0.2-0.4 sun) and around 40°C ➡ LCOE (levelised cost of energy) based on - Practical performance, f(sun level, temperature) - Solar radiation data, e.g. Meteonorm - Comparison with multicrystalline Si practical perfomance based on NREL's SAM (Solar Advisor Model) ers in Dye Solar Cell Techno # Dyesol state of the art September 2011 # The challenge for industrially viable DSC Meet at the same time stringent criteria of Performance, Stability, Cost # Performance Stability Cost Global Leaders in Dye Solar Cell Technology # Components vs Impacts ## Dyesol investigated all materials and design aspects of DSC | Component | Impact | |--------------------------------------|---| | Module design | I _{sc} , cost, processability | | Dyes and Dye cocktails | I _{sc} | | TiO ₂ – pastes and layers | I _{sc} , cost, processability | | Modified TiO ₂ | I_{sc} , V_{oc} | | Electrolytes | Lifetime, FF, I _{sc} | | Sealants and barriers | Lifetime | | Counter electrode | FF, I _{sc} | | Conductors | I _{sc} , lifetime, active area | ⇒ Dyesol continues to provide its leadership role in DSC development towards industrialisation # Front-lit cell design ## **Design and concept work** WO/2009/105807 "SUB-ASSEMBLY FOR USE IN FABRICATING PHOTO-ELECTROCHEMICAL DEVICES AND A METHOD OF PRODUCING A SUB-ASSEMBLY" **Sourcing of substrates** First successful coating trials and reduction to practice mesh substrate foil substrate # Dyes and dye cocktails Dye combination selected for initial evaluation program > 34% current increase expected from benchmark dye **CSIRO**: stability of broad band absorbers, linker chemistry CNR Perugia (world leaders in Ru dye modeling) - Performance modeling - Modeling of stability of dye-TiO₂ NIMS: Synthesis of high-extinction broad band absorbers # Optimized TiO₂ paste and layers # Thorough understanding of paste rheology ⇒ tailored formulation programs - Commercially available TiO₂ powders - Proprietary additives - Process simplifications, thus lower costs - Better understanding paste shelf life ## Optimised light harvesting, haze Important for light absorption in the red and IR part of spectrum # Modified TiO₂ – bulk and surface Doped Bulk doping of titania to increase conduction band - Higher cell voltage - Due to higher band gap (CB) Surface doping of titania to increase device performance # Electrolytes ## In house and Merck - 1'000h, 85°C stability (IEC 61646) - Optimised stability/performance - More than 70 solvents reviewed and >20 tested - Establishment of thorough understanding of all electrolyte components on performance and cost - Understanding the importance of impurities on stability and performance - Redox mobility enhancement - Electrolyte immobilisation # Improved counter electrodes Pt vs C-based Deposition methods and annealing conditions Influence of various substrates Analytical characterisation - SEM, XPS, AFM - EIS/electrochemistry **Copyright Dyesol Limited 2011** # Conductors In house developed new formulations for high bulk conductivity screen printable Ag pastes: 70-80 nOhm m (benchmark) ⇒ 50-60 nOhm m Mesh development with partner - Lower cost alternatives to silver bus bars and current collectors - Transparent conductors: TCO and carbon based MOLESOL project (All carbon platforms for highly efficient molecular wire-coupled dye-sensitized solar cells) - Z-interconnects: polymers filled with arious conductors # Sealants ## Investigation of various classes of sealants - Epoxies - Thermoplastic - ORMOCERs ## Verification - Thermal cycling tests -40/+85°C (IEC 61646) - 1,000h+ at 85°C (IEC 61646) - Developed highly sensitive, electrochemical seal quality test | | WVTR | mol/(m² day) | |-------------------------|-------------------------------|---| | MOCON | 5×10 ⁻⁴ g/(m² day) | 3×10 ⁻⁵ mol/(m² day) | | OLED requirement | 1×10 ⁻⁶ g/(m² day) | 6×10 ⁻⁸ mol/(m ² day) | | Electrochemical testing | - | < 1×10 ⁻⁸ mol/(m² day) | # Excellent stability over >20'000h - 20,600 hours = 28.4 months of continuous illumination - Corresponding to 16,600 kWh/m² - Middle Europe: ~1,000 kWh/m² p.a. solar irradiation (London: 970 kWh/m² p.a.) - Southern Europe or Sydney: ~1,700 kWh/m² p.a. - Annual average device temperature during solar irradiation: ~45°C, in Canberra - Acceleration factor of 2-3 per 10°C temperature increase - Assuming a (conservative) factor of 2: - Middle Europe: 33 years - Southern Europe or Sydney 20 years # Future developments Evolution vs revolution September 2011 # Realistically achievable efficiencies 3 cases Total driving force =0.6 eV (I₃⁷/I-), w_{TiO2}=3mm, w_s=0.5mm, n_{diode}=1.3 | λ_{onset} V_{oc} | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | |--|------|------|------|------|------|------| | 800 nm | 8.5 | 9.7 | 11.0 | 12.1 | 12.8 | 12.8 | | 900 nm | 11.7 | 13.3 | 14.4 | 14.7 | 14.3 | 13.4 | | 1000 nm | 14.4 | 15.4 | 15.5 | 15.1 | 14.5 | 13.7 | | 1100 nm | 15.4 | 15.8 | 15.7 | 15.3 | 14.7 | 13.8 | | 1200 nm | 15.5 | 15.8 | 15.7 | 15.3 | 14.7 | 13.8 | | 1300 nm | 15.4 | 15.8 | 15.6 | 15.3 | 14.7 | 13.8 | Total driving force=0.6eV (I₃/I-), w_{TiO2}=8mm, w_s=0.5mm, n_{diode}=1.3 | λ _{onset} V _{oc} | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | |------------------------------------|------|------|------|------|------|------| | 800 nm | 7.8 | 8.9 | 10.0 | 11.1 | 12.1 | 12.4 | | 900 nm | 10.3 | 11.8 | 13.1 | 13.7 | 13.7 | 13.2 | | 1000 nm | 12.4 | 13.8 | 14.3 | 14.2 | 13.9 | 13.4 | | 1100 nm | 13.3 | 14.3 | 14.5 | 14.3 | 13.9 | 13.4 | | 1200 nm | 13.4 | 14.3 | 14.6 | 14.3 | 13.9 | 13.4 | | 1300 nm | 13.3 | 14.3 | 14.4 | 14.3 | 13.9 | 13.4 | Total driving force=0.3eV (optimised hole transport), w_{TiO2} =8mm, w_{s} =0.5mm, n_{dioc} | λ_{onset} V_{oc} | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 1.3 | |--|------|------|------|------|------|------|------| | 800 nm | 7.8 | 8.9 | 10.0 | 11.1 | 12.2 | 13.3 | 14.4 | | 900 nm | 10.3 | 11.8 | 13.2 | 14.7 | 16.2 | 17.4 | 17.1 | | 1000 nm | 12.4 | 14.2 | 16.0 | 17.7 | 19.0 | 19.1 | 17.6 | | 1100 nm | 13.9 | 15.9 | 17.8 | 19.0 | 19.6 | 19.3 | 17.7 | | 1200 nm | 15.3 | 18.1 | 18.7 | 19.2 | 19.7 | 19.4 | 17.7 | | 1300 nm | 16.1 | 17.9 | 18.7 | 19.1 | 20.0 | 19.2 | 17.7 | # Realistically achievable efficiencies Industrial design, I₃-/I- vs optimised hole transport # How to further improve DSC performance? Step 1 (2010-11): Dye, TiO₂, Electrolyte **EVOLUTIONARY** Dye with better absorption of red and IR light, high ε Experimental and modelling work Optimised scattering layers for better IR response \Rightarrow j_{sc} ~22 mA/cm² TiO₂/electrolyte combination, coadsorbents *) ⇒ V_{oc} 0.8-0.85V \Rightarrow η to ~11% for industrial DSC (from 8-9% base) *) e.g. DINHOP available from Dyesol # Industrially viable DSCs Why is their performance lower? Only use standard materials industrially available in kg quantities at realistic costs Low volatility and low toxicity solvents - Optimization for 20+ years product life, not just peak performance, UV filter! - Cell Width of ~10 mm - Length: at least 10 mm - Scalability to larger modules # Performance improvement ## **Highest purity Dyesol dyes** - 10 kg lots for N719 (N3) and Z907 - C106 for in-house use only so far # Performance improvement ## Step 2: (2012-16) REVOLUTIONARY - Better match between dye HOMO and redox system ⇒ V_{oc} 0.9V; and - Increase of j_{sc} to 24 mA/cm²: further optimised dyes, conductive transparent substrates, AR layers, optical engineering - ⇒ 14% for industrial DSC 16% for hero cells! - Faster, better matched redox couple or effective hole transport system (beyond 2016?) - **⇒ 18% for industrial DSC** # Performance improvement (cont.) - Optical up-conversion and/or down-conversion - Alternatively better use of UV through higher bandgap semiconductor ## Steel Roofing ## **World Coated Steel Market:** - Over 1 Billion square meters per annum, growing at 7-8% p.a. - Represents market of ~\$150 Billion per annum - Potential for DSC coated steel cladding is 20%, which represents an addressable market of: - ~200 million square metres p.a. - ~\$30 Billion p.a. - Equivalent to over 10 GW installed per annum, compared to 2007 installations of 2.8 GW Coil Coating Line Steel Roof ## Benefits of Rooftop Building Integrated PV | | PV | | | |--------------|-------|------|---------| | Installation | Frame | PV | | | | Roof | Roof | PV Roof | | Materials | Glass/Glass PV | Metal Carrier PV | PV Metal Roof | | |-----------|----------------|------------------|---------------|--| | | Support Frame | Metal Roof | | | | | Metal Roof | | • | | ## Tata-Dyesol JV ## **Dyesol-Tata Steel ~ BIPV commercialization** TATA STEEL Objective: establish product, process and supply chain that can be commercialized #### Phases: - •Alpha Phase (Complete) Processibility trial at pilot plant ~ 2010 & 2011 - -Welsh Government provided £5 million grant towards North Wales pilot-project (total cost \$11M split between Dyesol and Tata) - -Produced world's largest dye-sensitized solar cell module: - √ 6 metres long and 1.8 square meters - ✓ Single length rather than cells connected together - -Can produce 300mm x 6000mm panels - •Beta Phase Performance enhancement and cost reduction phase at NW plant ~ 2011 & 2012 - -Increased investment to ramp up rate of achieving grid parity - -Expand pilot plant to cater for new processes - •Gamma Phase 25-year life solar roofing product ~ 2013 & 2014 - –Install another roof manufacturing line for 25 year life solar panels, thus enabling \sim 20% of Tata' roofing steel (20 million m² p.a.) to be solar. ## Buildings as Power Stations - Tata supplies > 100 million m² of roof and wall cladding - Large buildings approach 100.000 m² in area - Most of the roof area is under-utilised - Vision is to <u>Functionalise</u> the whole roof surface ## Glass Façade & Dyesol-Pilkington JV ## **World Flat Glass Market:** - Over 6 Billion square metres per annum, growing at 5% p.a. - Building applications are roughly 70% of market, or 4.2 billion square metres per annum - Breakdown of 60%/40% for view and non-view; DSSC addressing non-view market at this stage - Represents an addressable market of: - 1.7 Billion square metres p.a. - \$25 Billion per annum ## **Dyesol-Pilkington Joint Venture:** - Formed Dyetec Solar®, 50/50 JV with Pilkington, a leading multinational glass company. - Objective is to industrialise technology for mass manufacture of glass-based BIPV, building-applied photovoltaic (BAPV) and automotive-integrated photovoltaic (AIPV) products. - Received US\$1 million grant from Ohio Third Frontier Fund to commence first phase of Toledo based large panel glass project and possibilities for ongoing funding - Completed equipment installation at Toledo project in August 2011 DSSC Glass Manufacturing Clothing, automotive & accessorises ## Texstile substrates as WE Realization of a DSC device using at least a Textile fabric - Sheet resistance $\leq 2 \Omega / \text{sq}$ - Electrolyte Impermeable ## Textile PV, Dyesol Italia within Dephotex After 2 weeks stabilization period "Fresh" cell efficiency 1,15% at 1/3 SUN ## Large Area about 6 cm²!!! | Irradiance
(W/m²) | Voc
(V) | Isc
(mA) | P. max
(mW) | Vmax
(V) | Imax
(mA) | FF (%) | Area
(cm²) | Ef (%) | |----------------------|------------|-------------|----------------|-------------|--------------|--------|---------------|--------| | 1000 | 0.79 | 30.6 | 6.59 | 0.37 | 17.6 | 27.4 | 5.72 | 1.15 | | 500 | 0.75 | 15.3 | 4.53 | 0.42 | 10.7 | 39.3 | 5.72 | 1.59 | | 200 | 0.71 | 5.7 | 2.19 | 0.46 | 4.8 | 54.1 | 5.72 | 1.92 | Measurements performed by CENER under STC # **Textile integration** Photographer - Thomas Bloch Copyright Dyesol Limited 2011 Global Leaders in Dye Solar Cell Technology