

2269-22

Workshop on New Materials for Renewable Energy

17 - 21 October 2011

3rd Generation Solar Technology. Dyesol approach to DSSC: State of the art and future developments

Luca SORBELLO Dyesol Italia, Roma Italy

3rd Generation Solar Technology

Prof. Luca Sorbello PhD MA B.Sc. lsorbello@dyesol.com

September 2011

Company Overview

Company Background

Dyesol, a solar technology company, engages in the commercialization of dye-sensitized solar cells (DSSC)

- Strong IP position with patented materials, equipment and processes for DSSC manufacturing
- One of three original DSSC technology licensors; first to focus on steel roof, glass façade and window applications
- Founded in 2004 and headquartered in New South Wales, Australia. Listed on ASX in 2005.

Ticker (ASX)	DYE
Price ¹	A\$0.42
Average Volume (3m)	257,053
Market Capitalization ¹	A\$66.1M
Shares Outstanding	157.48M

¹As of September 7, 2011

Global Footprint

- Global headquarters
- Subsidiaries: Germany, Italy, Japan, Korea, Singapore, Switzerland, UK and USA
- Representatives, agents or contracts: Abu Dhabi, China, Malaysia, Taiwan and Turkey

Dyesol Italia

R&D	Name	Aim
	DEPHOTEX	Textile PV
Projects	MOLESOL	Transparent Conductive material based on Carbon
Projects	MATERA	TiO ₂ Laser sintering
	Hi-ZEV	DSC for electric mobility
	DyeCell	BIPV

Dyesol italia was founded in 2007

Collaboration	
CNR Perugia	
CNR Lecce	
CNR Palermo	

Commercial	Geographical areas
Materials supplier	
Equipment supplier	All around Europe
Technical support	All around Europe
Consulting	

Offices	Laboratories
Rome	Near Rome

Where is Energy Used?

Built environment > 45% WW Mobility 17%

Annual Greenhouse Gas Emissions by Sector

BIPV Roofing & Cladding Market World Wide

ers in Dye Solar Cell Techi

Estimated Completed Roof Accessible Market (@40%), 2021 (M m2)

UK 3,534, France 3,393, Germany 4,093 Netherlands 901 Spain 2,166

Rest of EU15 35,510, EU12 22,187, Eastern EU 10,000

USA 44,296, Canada 3,964

India 182,785, S Asia 40,000

China 42,154, East Asia 40,000, SE Asia 40,000

Brazil 25,998 Rest of S America 35,000

SE Asia 47,000, Australasia 3,000

Russia 30,000, North Asia 30,000

Turkey 17,000, West Asia 20,000

North Africa 25,000, Central Africa 10,000, Southern Africa 15,000

Total 605 B m²

At 5% access per annum, market value is \$600B/annum

(Source: IEA, Apropedia, BIPVChina.com,

Freedonia, Colors, Dyesol)

Business Model

Dyesol has a capital efficient, or "capital-light" business model: (1) own technology IP; (2) licenses to manufacturing partners and (3) typically has exclusive materials supply agreements in place:

- IP Portfolio:
 - Portfolio of over 20 interlocking patents and registered designs covering equipment, processes and key materials
 - Registered in major markets: USA, Japan, EU; selectively in Korea, India, China, Singapore, Australia and South Africa
- Global partnering with focus on 5 market sectors:
 - Steel BIPV
 - Glass / window BIPV
 - Automotive/ Flexibles
 - Electronic applications
 - Built environment Indoors or BAIPV
- Products/Services:
 - DSSC Materials (~30%+ margin): dye, semiconductor pastes, electrolyte, conductor
 - DSSC product components
 - DSSC prototyping and testing equipment
 - Collaborative and contract R&D
 - Consulting and training services
 - Technology upgrades

Dyes

TiO₂ Paste

Building Integrated Photovoltaic (BIPV)

- BIPV is solar cells embedded into building materials used to replace conventional building materials in parts of the building envelope such as the roof, skylights, or facades
- In addition to new construction, existing buildings may be retrofitted with BIPV modules
- Provides access to multi-\$100 billion target markets

Key Strategic Partners

Partner	Market	Region	Details
TATA STEEL	Steel / wall & roof applications	UK/Global	 Fifth largest steel producer in the world Co-develop and commercialise DSC on coil-coated steel £10+ million joint-programme under the Welsh Assembly Government (WAG) contract Production and distribution forecast by FY 2013
MERCK	Materials supply	Germany/ Global	 World leader in development and manufacture of ionic liquids and electrolytes Co-develop electrolytes for use in DSC
PILKINGTON Smart Glass SOUTIONS	 Part of NSG Group, world's 2nd largest manufacturers of glass and glazing products for building, automotive and specialty glass markets Commercialise DSC on view and non-view glass, utilising Pilkington's TEC series of transparent conductive oxide (TCO) coated float glass and Dyesol's DSC materials Ohio State Third Frontier Fund – US\$ 1 million Development grant confirmed 		
Singapore Aerospace Manufacturing	Engineering and process solutions	Singapore/ Global	 Co-develop proto-type manufacturing facilities for use by Dyesol applications partners Owned by Singapore Government Instrumental in controlling DSC "know-how"
TECHNOLOGY		Korea/ Global	 Dyesol-Timo is 50/50 JV for development and commercialisation of DSC in Korea Timo Technologies is a listed electronics supplier to large MNCs such as LG

R&D Around the World

Module designs: Dyesol Australia

Dyes: Dyesol Australia, CSIRO Australia, NIMS Japan, CNR Perugia (FP7)

Optimised TiO₂ paste and layers: Dyesol UK, Dyesol Australia, CNR Palermo

Modified TiO₂ – bulk and surface: Dyesol UK + FP7 program

Electrolytes: Dyesol Australia + Merck (Germany + Japan)

Improved counter electrodes: Dyesol UK, Dyesol Australia + QUT (Australia),

ARC Linkage

Conductors: Dyesol UK, Sefar, FP7

Sealants and barriers: Dyesol UK, Dyesol Australia, Dyesol Italia

Manufacturing: Dyesol Italia

PV Technology Background

First Generation - Crystalline Silicon

By far the most prevalent bulk material in solar cells. It is separated into multiple categories: monocrystalline, polycrystalline and ribbon silicon. Crystalline silicon cells account for around 90% of the market. The annual growth rate is expected to be 30%.

Second Generation - Thin Film Semiconductor

Categorized by the cell materials: amorphous or nano-crystalline e.g. CdTe. The thin film share, in terms of actual production, was 13.5% in 2010. The expected CAGR is around 25%

Third Generation - Artificial Photosynthesis, Nanotechnology

Third generation PV includes multiple technologies that seek to improve upon first two generations through a combination of cost reduction and increased energy efficiency.

BOS ■ Frame Energy Payback Time (Years) 3.5 ■ Module 3 2.5 2 1.5 1 0.5 Multi-DSC Thinfilm crystalline (Fe-Poly) **PV Technology**

(Sources: ECN & M. Grätzel 2008)

Payback Time

Comparison between DSC and Silicon Panels Outdoor

Deviation from STC behaviour (British Summer, Shotton site)

DSSC Advantages

				Payback	period (yrs)		
				Stability	World solar enery		
Technology	Efficiency	Cents/kwh	Sunlight	(yrs)	consumption	Current	Anticipated
DSSC	10~13%	10.6	ambient light conditions	25		0.75	0.5
Thin Film	5~13%	13~18	direct	25	20%	3	1
Crystalline	15~20%	16~19.6	direct	25	80%	3.5	2

DSSC Material Cost Competitiveness

DSSC materials

The US Spot price in March 2011 for titanium dioxide (TiO₂)/dye is \$1.30-1.44/lb, which represents a **7%** increase from 2010

1ST (Crystalline) and 2nd (TFT) Generation Materials

- Spot silicon has risen to between \$1.65 and \$1.72/lb throughout the first quarter of 2011 from \$1.25 to \$1.30/lb this time last year, an increase of 30%
- Cadmium telluride (CdTe) is the basis of the largest sector of thin film solar cells. However, with the growing demand for CdTe in producing 2nd generation solar cells, the availability of the rare element tellurium could be a serious problem in a medium term

DSSC Market Dynamics

Several global companies are participating in developing and commercializing DSSCs in the near future, many of which are Dyesol's existing customers

Company	Region	Product focus							
Producing									
Dyesol Limited	Australia	R&D, supplier							
G24 Innovations	UK	R&D, nanotechnology							
	Upcoming	7							
3GSolar	Israel	R&D							
Acrosol	Korea	R&D							
Aisin Seiki	Japan	Auto & built environment							
Dyetec Solar(Dyesol-Pilkington JV) Fujikura	USA/global Japan	Glass for Buildings and auto Devices							
Nissha Printing	Japan	Industrial components, printing solutions							
NLAB Solar	Sweden	Nanotechnology R&D							
Oxford Photovotaics Ltd	UK	Solid state manufacturing							
PECCELL	Japan	University JV R&D							
Solar Print	England	Printable DSSC devices							
Solaronix SA (JV with 3GSolar) Sony Corp Tata	Switzerland Japan/global UK/India/global	Laboratories and companies Devices Steel roofing							

Indicative material cost

For a 100.000 m² production (7MW_p)

2010 cost status

Ī	Component	Quantity f	or 100,000	m²		Present price					price				
	Dye (N719)	100 -	140	kg			20	US\$/g	20	4	28	US\$/m ²	<	10	US\$/g
	Ru (N719)	8.0 -	11.2	kg	6,000	-	28,000	US\$/kg	0.5	-	3.1	US\$/m²		Me	t
	TiO ₂	2,000 -	2,500	kg		>	1,000	US\$/kg	20	-	25	US\$/m ²	<	250	US\$/kg
	Electrolyte (solvent based)	~	5,000	kg		<	140	US\$/kg		٧	7	US\$/m²		Met	*
	Glass/TCO		100,000	m ²		>	10	US\$/m²		>	10	US\$/m ² **	<	10	US\$/m²
	Pt	7	2	kg		>	48,000	US\$/kg		7	1	US\$/m²		Me	t

^{*} Cost reduction required for pure ionic liquid-based electrolytes

^{** &}gt;20 US\$/m² if two glass/TCO substrates are required

A few words on costs

- Estimated materials costs for relatively small-scale DSC module production (7MW_p p.a.): 70US\$/m², corresponds to 1\$/W_p @ 7% module efficiency
- \$/W_p is inadequate metric for DSC, particularly if mounted on façades
- In contrast to Si, DSC efficiencies highest around average sun levels (0.2-0.4 sun) and around 40°C
 ➡ LCOE (levelised cost of energy) based on
 - Practical performance, f(sun level, temperature)
 - Solar radiation data, e.g. Meteonorm
 - Comparison with multicrystalline Si practical perfomance based on NREL's SAM (Solar Advisor Model)

ers in Dye Solar Cell Techno

Dyesol state of the art

September 2011

The challenge for industrially viable DSC

Meet at the same time stringent criteria of Performance, Stability, Cost

Performance Stability

Cost

Global Leaders in Dye Solar Cell Technology

Components vs Impacts

Dyesol investigated all materials and design aspects of DSC

Component	Impact
Module design	I _{sc} , cost, processability
Dyes and Dye cocktails	I _{sc}
TiO ₂ – pastes and layers	I _{sc} , cost, processability
Modified TiO ₂	I_{sc} , V_{oc}
Electrolytes	Lifetime, FF, I _{sc}
Sealants and barriers	Lifetime
Counter electrode	FF, I _{sc}
Conductors	I _{sc} , lifetime, active area

⇒ Dyesol continues to provide its leadership role in DSC development towards industrialisation

Front-lit cell design

Design and concept work

WO/2009/105807 "SUB-ASSEMBLY FOR USE IN FABRICATING PHOTO-ELECTROCHEMICAL DEVICES AND A METHOD OF PRODUCING A SUB-ASSEMBLY"

Sourcing of substrates

First successful coating trials and reduction to practice

mesh substrate

foil substrate

Dyes and dye cocktails

Dye combination selected for initial evaluation program

> 34% current increase expected from benchmark dye

CSIRO: stability of broad band absorbers, linker chemistry

CNR Perugia (world leaders in Ru dye modeling)

- Performance modeling
- Modeling of stability of dye-TiO₂

NIMS: Synthesis of high-extinction broad band absorbers

Optimized TiO₂ paste and layers

Thorough understanding of paste rheology ⇒ tailored formulation programs

- Commercially available
 TiO₂ powders
- Proprietary additives
- Process simplifications, thus lower costs
- Better understanding paste shelf life

Optimised light harvesting, haze

 Important for light absorption in the red and IR part of spectrum

Modified TiO₂ – bulk and

surface

Doped

Bulk doping of titania to increase conduction band

- Higher cell voltage
- Due to higher band gap (CB)

Surface doping of titania to increase device performance

Electrolytes

In house and Merck

- 1'000h, 85°C stability (IEC 61646)
- Optimised stability/performance
- More than 70 solvents reviewed and >20 tested
- Establishment of thorough understanding of all electrolyte components on performance
 and cost
- Understanding the importance of impurities on stability and performance
- Redox mobility enhancement
- Electrolyte immobilisation

Improved counter electrodes

Pt vs C-based
 Deposition methods and annealing conditions
 Influence of various substrates
 Analytical characterisation

- SEM, XPS, AFM
- EIS/electrochemistry

Copyright Dyesol Limited 2011

Conductors

In house developed new formulations for high bulk conductivity screen printable Ag pastes: 70-80 nOhm m (benchmark)

⇒ 50-60 nOhm m

Mesh development with partner

- Lower cost alternatives to silver bus bars and current collectors
- Transparent conductors: TCO and carbon based
 MOLESOL project (All carbon platforms for highly efficient molecular wire-coupled dye-sensitized solar cells)
- Z-interconnects: polymers filled with arious conductors

Sealants

Investigation of various classes of sealants

- Epoxies
- Thermoplastic
- ORMOCERs

Verification

- Thermal cycling tests -40/+85°C (IEC 61646)
- 1,000h+ at 85°C (IEC 61646)
- Developed highly sensitive, electrochemical seal quality test

	WVTR	mol/(m² day)
MOCON	5×10 ⁻⁴ g/(m² day)	3×10 ⁻⁵ mol/(m² day)
OLED requirement	1×10 ⁻⁶ g/(m² day)	6×10 ⁻⁸ mol/(m ² day)
Electrochemical testing	-	< 1×10 ⁻⁸ mol/(m² day)

Excellent stability over >20'000h

- 20,600 hours = 28.4 months of continuous illumination
- Corresponding to 16,600 kWh/m²
 - Middle Europe: ~1,000 kWh/m² p.a. solar irradiation (London: 970 kWh/m² p.a.)
 - Southern Europe or Sydney: ~1,700 kWh/m² p.a.
- Annual average device temperature during solar irradiation: ~45°C, in Canberra
- Acceleration factor of 2-3 per 10°C temperature increase
- Assuming a (conservative) factor of 2:
 - Middle Europe: 33 years
 - Southern Europe or Sydney 20 years

Future developments

Evolution vs revolution

September 2011

Realistically achievable efficiencies 3 cases

Total driving force =0.6 eV (I₃⁷/I-), w_{TiO2}=3mm, w_s=0.5mm, n_{diode}=1.3

λ_{onset} V_{oc}	0.7	0.8	0.9	1.0	1.1	1.2
800 nm	8.5	9.7	11.0	12.1	12.8	12.8
900 nm	11.7	13.3	14.4	14.7	14.3	13.4
1000 nm	14.4	15.4	15.5	15.1	14.5	13.7
1100 nm	15.4	15.8	15.7	15.3	14.7	13.8
1200 nm	15.5	15.8	15.7	15.3	14.7	13.8
1300 nm	15.4	15.8	15.6	15.3	14.7	13.8

Total driving force=0.6eV (I₃/I-), w_{TiO2}=8mm, w_s=0.5mm, n_{diode}=1.3

λ _{onset} V _{oc}	0.7	0.8	0.9	1.0	1.1	1.2
800 nm	7.8	8.9	10.0	11.1	12.1	12.4
900 nm	10.3	11.8	13.1	13.7	13.7	13.2
1000 nm	12.4	13.8	14.3	14.2	13.9	13.4
1100 nm	13.3	14.3	14.5	14.3	13.9	13.4
1200 nm	13.4	14.3	14.6	14.3	13.9	13.4
1300 nm	13.3	14.3	14.4	14.3	13.9	13.4

Total driving force=0.3eV (optimised hole transport), w_{TiO2} =8mm, w_{s} =0.5mm, n_{dioc}

λ_{onset} V_{oc}	0.7	0.8	0.9	1.0	1.1	1.2	1.3
800 nm	7.8	8.9	10.0	11.1	12.2	13.3	14.4
900 nm	10.3	11.8	13.2	14.7	16.2	17.4	17.1
1000 nm	12.4	14.2	16.0	17.7	19.0	19.1	17.6
1100 nm	13.9	15.9	17.8	19.0	19.6	19.3	17.7
1200 nm	15.3	18.1	18.7	19.2	19.7	19.4	17.7
1300 nm	16.1	17.9	18.7	19.1	20.0	19.2	17.7

Realistically achievable efficiencies

Industrial design, I₃-/I- vs optimised hole transport

How to further improve DSC performance?

Step 1 (2010-11): Dye, TiO₂, Electrolyte

EVOLUTIONARY

 Dye with better absorption of red and IR light, high ε
 Experimental and modelling work
 Optimised scattering layers for better IR response

 \Rightarrow j_{sc} ~22 mA/cm²

TiO₂/electrolyte combination, coadsorbents *) ⇒ V_{oc} 0.8-0.85V

 \Rightarrow η to ~11% for industrial DSC (from 8-9% base)

*) e.g. DINHOP

available from Dyesol

Industrially viable DSCs

Why is their performance lower?

Only use standard materials industrially available

in kg quantities at realistic costs

Low volatility and low toxicity solvents

- Optimization for 20+ years product life, not just peak performance, UV filter!
- Cell Width of ~10 mm
- Length: at least 10 mm
- Scalability to larger modules

Performance improvement

Highest purity Dyesol dyes

- 10 kg lots for N719 (N3) and Z907
- C106 for in-house use only so far

Performance improvement

Step 2: (2012-16) REVOLUTIONARY

- Better match between dye HOMO and redox system ⇒ V_{oc} 0.9V; and
- Increase of j_{sc} to 24 mA/cm²: further optimised dyes, conductive transparent substrates, AR layers, optical engineering
 - ⇒ 14% for industrial DSC 16% for hero cells!
- Faster, better matched redox couple or effective hole transport system (beyond 2016?)
 - **⇒ 18% for industrial DSC**

Performance improvement (cont.)

- Optical up-conversion and/or down-conversion
- Alternatively better use of UV through higher bandgap semiconductor

Steel Roofing

World Coated Steel Market:

- Over 1 Billion square meters per annum, growing at 7-8% p.a.
- Represents market of ~\$150 Billion per annum
- Potential for DSC coated steel cladding is 20%, which represents an addressable market of:
 - ~200 million square metres p.a.
 - ~\$30 Billion p.a.
- Equivalent to over 10 GW installed per annum, compared to 2007 installations of 2.8 GW

Coil Coating Line

Steel Roof

Benefits of Rooftop Building Integrated PV

	PV		
Installation	Frame	PV	
	Roof	Roof	PV Roof

Materials	Glass/Glass PV	Metal Carrier PV	PV Metal Roof	
	Support Frame	Metal Roof		
	Metal Roof		•	

Tata-Dyesol JV

Dyesol-Tata Steel ~ BIPV commercialization

TATA STEEL

Objective: establish product, process and supply chain that can be commercialized

Phases:

- •Alpha Phase (Complete) Processibility trial at pilot plant ~ 2010 & 2011
- -Welsh Government provided £5 million grant towards North Wales pilot-project (total cost \$11M split between Dyesol and Tata)
- -Produced world's largest dye-sensitized solar cell module:
 - √ 6 metres long and 1.8 square meters
 - ✓ Single length rather than cells connected together
- -Can produce 300mm x 6000mm panels
- •Beta Phase Performance enhancement and cost reduction phase at NW plant ~ 2011 & 2012
 - -Increased investment to ramp up rate of achieving grid parity
- -Expand pilot plant to cater for new processes
- •Gamma Phase 25-year life solar roofing product ~ 2013 & 2014
- –Install another roof manufacturing line for 25 year life solar panels, thus enabling \sim 20% of Tata' roofing steel (20 million m² p.a.) to be solar.

Buildings as Power Stations

- Tata supplies > 100 million m² of roof and wall cladding
- Large buildings approach 100.000 m² in area
- Most of the roof area is under-utilised
- Vision is to <u>Functionalise</u> the whole roof surface

Glass Façade & Dyesol-Pilkington JV

World Flat Glass Market:

- Over 6 Billion square metres per annum, growing at 5% p.a.
- Building applications are roughly 70% of market, or
 4.2 billion square metres per annum
- Breakdown of 60%/40% for view and non-view;
 DSSC addressing non-view market at this stage
- Represents an addressable market of:
 - 1.7 Billion square metres p.a.
 - \$25 Billion per annum

Dyesol-Pilkington Joint Venture:

- Formed Dyetec Solar®, 50/50 JV with Pilkington, a leading multinational glass company.
- Objective is to industrialise technology for mass manufacture of glass-based BIPV, building-applied photovoltaic (BAPV) and automotive-integrated photovoltaic (AIPV) products.
- Received US\$1 million grant from Ohio Third Frontier Fund to commence first phase of Toledo based large panel glass project and possibilities for ongoing funding
- Completed equipment installation at Toledo project in August 2011

DSSC Glass Manufacturing

Clothing, automotive & accessorises

Texstile substrates as WE

Realization of a DSC device using at least a Textile fabric

- Sheet resistance $\leq 2 \Omega / \text{sq}$
- Electrolyte Impermeable

Textile PV, Dyesol Italia within Dephotex

After 2 weeks stabilization period

"Fresh" cell efficiency 1,15% at 1/3 SUN

Large Area about 6 cm²!!!

Irradiance (W/m²)	Voc (V)	Isc (mA)	P. max (mW)	Vmax (V)	Imax (mA)	FF (%)	Area (cm²)	Ef (%)
1000	0.79	30.6	6.59	0.37	17.6	27.4	5.72	1.15
500	0.75	15.3	4.53	0.42	10.7	39.3	5.72	1.59
200	0.71	5.7	2.19	0.46	4.8	54.1	5.72	1.92

Measurements performed by CENER under STC

Textile integration

Photographer - Thomas Bloch Copyright Dyesol Limited 2011

Global Leaders in Dye Solar Cell Technology