

The Abdus Salam International Centre for Theoretical Physics

2269-6

Workshop on New Materials for Renewable Energy

17 - 21 October 2011

Computational modeling of materials and processes in hybrid/organic photovoltaics

Filippo DE ANGELIS Istituto CNR di Scienze e Tecnologie Moleculari ISTM c/o Dipt. di Chimica, Univ. di Perugia I-06123 Perugia Italy

Computational Modeling of Materials and Processes in Hybrid/Organic Photovoltaics

Filippo De Angelis

Istituto CNR di Scienze e Tecnologie Molecolari (ISTM), c/o Dipartimento di Chimica, Università di Perugia, I-06123 Perugia, Italy

Part I Photovoltaics

CONVENTIONAL PHOTOVOLTAICS: SILICON

CONVENTIONAL PHOTOVOLTAICS: SILICON HIGH EFFICIENCY / HIGH PRICE

WHY SILICON ?

BECAUSE IT'S BLACK!

CAN I USE A DIFFERENT SEMICONDUCTOR?

TITANIUM DIOXIDE IS A HIGHLY STABLE SEMICONDUCTOR WITH EXCELLENT ELECTRON MOBILITY BUT IT'S WHITE!

NANOCRYSTALLINE TiO₂

DYE SENSITIZED SOLAR CELLS

NATURAL DYES

TiO₂

DSC: Principles of operation

In DSCs TiO₂ nanoparticles are sensitized with a light-harvesting sensitizer and are typically surrounded by a liquid electrolyte.

The dye-sensitizer captures photons and an electron/hole pair is generated.

The electron is injected into conduction band of TiO_2 and then flows into the external circuit.

The oxided dye is regenerated by the redox couple in the electrolyte.

Photocurrent: rate of electron injection (I= dq/dt)

Photovoltage: Position of the conduction band.

Dye-Sensitized Solar Cells: Flexible, colorful, transparent PVs

DYESOL-TATA (UK) / FUJIKURA (JPN)

From Design to Prototypes:

All materials purchased from Dyesol

energy

Part II Modeling

The goal: modeling nanoscale devices

- <u>Large dimensions</u> : realistic models usually require dealing with a few hundred atoms (oversimplified models are often inaccurate)
- •<u>Complexity</u> : complex potential energy surfaces with several minima; dealing with transition metals (electronic correlation)

•<u>Optical properties:</u> need an accurate description of the excited states

•<u>Dynamical aspects</u> : need to perform ab initio molecular dynamics simulations

Theoretical and computational approach

- Geometry optimizations of extended systems, in condensed phase, for both ground and excited states
- Ab initio molecular dynamics
- Calculation of absorption and emission spectra
- Inclusion of solvation effects (explicit or implicit models)

F. De Angelis, S. Fantacci, A. Sgamellotti, *Theor. Chem. Acc.* 2007, 17, 1093.

The electronic Schrödinger equation: Born-Oppenheimer approximation

$$\hat{H}_e \varphi_n(\mathbf{r}; \mathbf{R}) = \varepsilon_n(\mathbf{R}) \varphi_n(\mathbf{r}; \mathbf{R})$$

The Hamiltonian for the electronic motion:

$$\hat{H}_{e} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} - \sum_{a,i} \frac{Z_{a}}{r_{ai}} + \sum_{i>j} \frac{1}{r_{ij}} + \sum_{a>b} \frac{Z_{a}Z_{b}}{R_{ab}}$$

The electron-electron repulsion term makes it unsolvable for n>1 (SOB!!)

Evaluation of the energy and its derivatives:

•Quantum mechanics (ab initio)

•Multi-reference configuration interaction $\rightarrow N^{7-8}$ (MRCI)•Coupled-cluster $\rightarrow N^{5-6}$ (CC)•Density Functional Theory $\rightarrow N^{3-4}$ (DFT) $H_2O \rightarrow 10$ elettroni MRCI=30 min, CC=15 min, DFT=1 min $2H_2O \rightarrow 20$ elettroni MRCI=7680(128 h) CC=960 (16h) DFT=8-16

 $\rightarrow N^2$

- •Semi-empirical methods
- •INDO/MNDO/ZINDO \rightarrow N ²⁻³
- Model potentials
- •force fields

Dimensions/accuracy

Density Functional Theory

• Hohenberg-Kohn theorems

$$E[\rho] = T_0[\rho] + J[\rho] + \int v(\mathbf{r}) \rho(\mathbf{r}) d\mathbf{r} + E_{\rm xc}[\rho]$$

The Energy is a Functional of the Electron Density

• Exchange-correlation potential

LDA, BP86, <u>**B3LYP**</u> PBE0

The unknown part of the electron-electron interaction

• Kohn-Sham equations

$$\left(-\frac{1}{2}\nabla^2 + V_{\mathcal{S}}[\rho]\right)\varphi_i = \varepsilon_i\varphi_i \qquad \rho = \sum_i n_i |\phi_i|^2$$

Single particle equations (very simple to solve !!)

Gradient (first derivative) and Hessian (second derivative):

$$g(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \cdot \\ \cdot \\ \frac{\partial f}{\partial x_n} \end{bmatrix} \qquad H(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \cdot & \cdot & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \cdot & \cdot & \cdot & \cdot \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdot & \cdot & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{bmatrix}$$

Minima:

Transition States:

$$g(x) = \begin{bmatrix} \phi_1(x) \\ \phi_2(x) \\ \vdots \\ \vdots \\ \phi_n(x) \end{bmatrix} \lambda(x) = \begin{bmatrix} \lambda_1(x) \\ \lambda_2(x) \\ \vdots \\ \vdots \\ \lambda_n(x) \end{bmatrix} \qquad g(x) = \begin{bmatrix} \phi_1(x) \\ \phi_2(x) \\ \vdots \\ \vdots \\ \vdots \\ \phi_n(x) \end{bmatrix} \lambda'(x) = \begin{bmatrix} -\lambda_1(x) \\ \lambda_2(x) \\ \vdots \\ \vdots \\ \vdots \\ \lambda_n(x) \end{bmatrix}$$

Gradient and Hessian matrices

(First Principles) Molecular Dynamics

We call *Molecular Dynamics* (MD) a computer simulation technique in which the time evolution of a set of interacting atoms is followed by integrating their equations of motion.

We limit our attention to a set of interacting atoms moving classically: the dynamics is described by Newton's law:

$$\mathbf{F}_i = m_i \mathbf{a}_i$$

 $\mathbf{a}_{i} = d^{2}\mathbf{r}_{i}/dt^{2}$ \mathbf{F}_{i} m_{i} The interatomic potential: $\mathbf{F}_{i} = -\nabla_{\mathbf{r}_{i}}V(\mathbf{r}_{1}, \dots, \mathbf{r}_{N})$

Nuclear displacement (R)

The Car-Parrinello method: DFT-based Molecular Dynamics

Generalized Lagrangian (nuclei + electrons)

$$L = \sum_{i}^{occ} \int dr \ \mu_{i} |\dot{\psi}_{i}(r)|^{2} + \frac{1}{2} \sum_{I} M_{I} R_{I}^{2} - E[\{R_{I}\}] + \sum_{ij} \Lambda_{ij} [\int dr \psi_{i}^{*}(r) \psi_{j}(r) - \delta_{ij}]$$

Classical equations of motion

$$\mu_i \dot{\Psi}_i(r,t) = -\frac{1}{2} \frac{\delta E}{\delta \Psi_i^*(r,t)} ; + \sum_j \Lambda_{ij} \Psi_j$$
$$M_I \dot{R}_I = -\frac{\Delta E}{\Delta R_I}$$

Plane-Wave basis set

$$\psi_i^k(r) = e^{ik*r} \sum_g c_i^k(g) e^{ik*r}$$

Hartree Potential

$$E_{\rm kin} = \frac{1}{2} \sum_{i,\mathbf{G}}^{\mathbf{G}_c^{\rm wf}} G^2 |\phi_i(\mathbf{G})|^2 \qquad \mathbf{FFT} \rightarrow \mathbf{PP's}$$

Kinetic Energy

$$E_H = 2\pi\Omega \sum_{\mathbf{G}\neq 0}^{\mathbf{G}_c^{\text{dens}}} \frac{n^*(\mathbf{G})n(\mathbf{G})}{G^2}$$

Car-Parrinello Molecular Dynamics (CPMD)

Electronic minimization without moving the nuclei (SCF).

Then we allow the nuclei to move

Energy (E)

Nuclear displacement (R)

Vanderbilt Pseudopotentials:

Partition of the electron density into soft (delocalized) and hard (localized) terms

 $n(\mathbf{r}) = \sum_{i} \left[|\phi_i(\mathbf{r})|^2 + \sum_{nm,I} Q_{nm}^I(\mathbf{r}) \langle \phi_i | \beta_n^I \rangle \langle \beta_m^I | \phi_i \rangle \right]$

Double FFT grid techniques:

Calculation of delocalized terms in reciprocal space

Real space integrals localized in the core region

Reduction of the computational cost by a factor 2-4

Highly efficient parallelization:

P. Giannozzi, F. De Angelis, R. Car

J. Chem. Phys. 120, 2004, 5903.

Bio-inorganic chemistry:

F. De Angelis, R. Car, T.G. Spiro J. Am. Chem. Soc. 125, **2003**, 15710. **Solute-solvent interactions (PCM):**

F. De Angelis, M. Cossi, V. Barone et al.

Chem. Phys. Lett. 328, 2000, 302

Organometallic reactivity:

F. De Angelis, S. Fantacci, A. Sgamellotti *Coord. Chem. Rev. 250*, **2006**, 1497.

Excited states: Time Dependent DFT

Time Dependent Kohn-Sham Method

$$\left(-\frac{1}{2}\nabla^2 + V_s[\rho(t)]\right)\varphi_i(t) = i\frac{\partial\varphi_i(t)}{\partial t} \qquad \rho(t) = \sum_i n_i |\phi_i(t)|^2$$

• Adiabatic Local Density Approximation (ALDA)

$$δ$$
 v_{xc} [ρ](r,t) / $δ$ ρ(r',t') ≈ $δ$ v_{xc} [ρ_t](r) / $δ$ ρ_t(r')

- Calculation of transition energies and oscillator strengths absorption and emission spectra, NLO properties (2n+1 theorem and/or SOS)
- The excited state density is expressed as a linear combination of single occupied to virtual orbital excitations

$$\mathbf{ES} = \sum_{i} \mathbf{c}_{i} (\mathbf{o} \mathbf{o}' | \mathbf{vv}')$$

 $\varepsilon(\mathbf{r}) = \begin{bmatrix} 1 \text{ inside} \\ \varepsilon \text{ outside} \end{bmatrix}$

Solvent response by apparent surface charges:

$$\hat{\mathcal{V}}_{\sigma}(\vec{r}) = \sum_{i}^{tesserae} \frac{q_i}{|r - r_i|}$$

Solvation effects in TDDFT:

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^* & \mathbf{A}^* \end{pmatrix} \begin{pmatrix} \mathbf{X}_n \\ \mathbf{Y}_n \end{pmatrix} = \omega_n \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \mathbf{X}_n \\ \mathbf{Y}_n \end{pmatrix}$$

Pseudo-eigenvalue problem

$$\begin{split} A_{ai,bj} &= \delta_{ab} \delta_{ij} (\epsilon_a - \epsilon_i) + K_{ai,bj} + \mathscr{B}_{ai,bj}^{IEF} \\ B_{ai,bj} &= + K_{ai,jb} + \mathscr{B}_{ai,bj}^{IEF} \\ \text{Coupling matrices} \end{split}$$

$$K_{ai,bj} = \int d\mathbf{r} \int d\mathbf{r}' \phi_i(\mathbf{r}') \phi_a^*(\mathbf{r}') \left(\frac{1}{|\mathbf{r}'-\mathbf{r}|} + g_{xc}(\mathbf{r}',\mathbf{r})\right) \phi_j(\mathbf{r}) \phi_b^*(\mathbf{r})$$

$$\mathscr{B}_{ai,bj}^{IEF} = \sum_{k} \left(\int d\mathbf{r} \, \phi_i(\mathbf{r}') \, \phi_a^*(\mathbf{r}') \frac{1}{|\mathbf{r}' - \mathbf{s}_k|} \right) q(\mathbf{s}_k; \epsilon_\omega, \phi_j \phi_b^*)$$

Coupling matrix elements M. Cossi, V. Barone J. Chem. Phys., 2001, 115, 4708

Molecular dynamics of a TiO2-adsorbed dye in water

Computer Codes:

- GAUSSIAN 09
- TURBOMOLE
- MOLPRO
- GAMESS
- ADF
- QUANTUM ESPRESSO
- ABINIT

•CP2K

- USA
- GERMANY
- GERMANY
- UK / USA
- NETHERLANDS
- ITALY
- BELGIUM
- SWITZERLAND

COMPUTER RESOURCES

COMPUTER POWER: MOORE's LAW

Computer power doubles every 18 months!!!

Part III Results

Dye-sensitized solar cells: $\eta=11.3$ % Ru(II)-polypyridyl sensitizers on TiO₂

Indirect injection mechanism →No changes in free and adsorbed absorption spectra

O'Regan, B.; Grätzel, M. Nature, 1991, 353, 737; M. Grätzel, Nature, 2001, 414, 338.

The N3 dye:

Ru(II) d⁶ electron configuration. Singlet ground state. The triplet and quintet lie 14 e 41 kcal/mol higher in energy.

The terminal carboxylic groups can be either protonated or deprotonoated and allow stable anchoring of the dye to the TiO_2 surface

Calculated and experimental geometrical parameters

	Ru-N _{1,3}	Ru-N _{2,4}	Ru-N _{5,6}	$N_1 Ru N_2$	N ₁ RuN ₃	N ₁ RuN ₄	N ₂ RuN ₄	N ₅ RuN ₆
Exp.	2.036	2.030	2.048	79.8(5)	90.6(5)	97.8(5)	174.5(6)	88.2(5)
	2.058	2.013	2.046	79.1(5)		95.9(5)		
Theor.	2.079	2.056	2.036	78.9	95.1	94.0	169.5	90.2

S. Fantacci, F. De Angelis, A. Selloni J. Am. Chem. Soc. 2003, 125, 4381.

Analysis of the electronic structure:

S. Fantacci, F. De Angelis, A. Selloni J. Am. Chem. Soc. 2003, 125, 4381.

Analysis of the excited states:

state	composition	E(eV)	f
3 ¹ B	$51\%(56b{\rightarrow}58a);19\%(55b{\rightarrow}58a);13\%(57a{\rightarrow}58b);13\%(56a{\rightarrow}57b)$	0.901	0.019
4 ^{1}B	$65\% (55b {\rightarrow} 58a); \ 15\% (56b {\rightarrow} 58a); \ 7\% (55b {\rightarrow} 59a); \ 6\% (56a {\rightarrow} 58b)$	0.994	0.012
5 ^{1}B	$81\%(57a{ o}58b); \ 9\%(56b{ o}58a)$	1.094	0.024
8 ¹ B	$46\%(57a{\rightarrow}59b),\ 20\%(56b{\rightarrow}59a);\ 19\%(56a{\rightarrow}58b);\ 13\%(55b{\rightarrow}59a)$	1.257	0.0166
8 ¹ A	$40\%(57a{ o}60a);\ 38\%(56b{ o}59b);\ 6\%(56a{ o}59a)$	1.357	0.0177
9 ¹ A	$53\%(56b{ o}59b); 22\%(57a{ o}60a); 10\%(56b{ o}58b);$	1.379	0.0164
10 ¹ B	$58\%(55b{ o}59a); 17\%(56a{ o}58b); 7\%(56b{ o}60a)$	1.430	0.0814
10 ¹ A	$28\% (57a {\rightarrow} 60a);\ 20\% (55b {\rightarrow} 59b);\ 13\% (57a {\rightarrow} 59a);$	1.445	0.0794
	$10\%(56a{ o}59a);\ 9\%(56a{ o}60a)$		
11 ¹ A	$79\%(55b{ o}59b); 8\%(57a{ o}59a)$	1.472	0.0337
$11 \ ^1B$	$92\%(56\mathrm{b}{ ightarrow}60\mathrm{a})$	1.515	0.0163
12 ¹ A	$89\%(56\mathrm{a}{ ightarrow}60\mathrm{a})$	1.534	0.0253

S. Fantacci, F. De Angelis, A. Selloni
F. De Angelis, S. Fantacci, A. Selloni
F. De Angelis, S. Fantacci, M.K. Nazeeruddin
F. De Angelis, S. Fantacci, M. Grätzel et al.

J. Am. Chem. Soc. 2003, *125*, 4381. *Chem. Phys. Lett.* 2004, *389*, 204. *Chem. Phys. Lett.* 2005, *415*, 115. *J. Am. Chem. Soc.* 2005, *127*, 16835.

Computational investigation: Electronic structure of oligomers

Anatase TiO₂ nanocrystals

H. G. Yang et al. Nature 453, 2008, 29

Catal. Today 85, 2003,932

Truncated tetragonal bipyramidal shape:

two flat, square surfaces are [001] facets and eight isosceles trapezoidal surfaces are [101] facets.

The [101] is the most thermodynamically stable surface, while the [001] is more reactive for dissociative adsorption of reactant molecules.

High surface area and large reactive surface \rightarrow higher photocatalytic activities.

Modeling of TiO₂ nanoparticles: Stoichiometric anatase (TiO₂)₃₈ and (TiO₂)₈₂ clusters of 1 and 2 nm dimensions exposing (101) surfaces

B3LYP/3-21g* TD-DFT gap in water 3.20/3.41 eV

B3LYP/DZVP 3.13/3.35 eV

Experimental gap in acqueous solutions: 3.20 – 3.30 eV

F. De Angelis, A. Tilocca, A. Selloni J. Am. Chem. Soc. 2004, 126, 15024

Origin of sub-band gap states?

ngle and Multi-Wall TiO₂-NTs: Adsorption mode

Work in progress

F. Nunzi, F. De Angelis, *J. Phys .Chem*. C, 2010

Alignment of excited state potentials:

F. De Angelis, S. Fantacci, A. Selloni, Nanotechnology, 2008, 19, 424002.

Ab initio molecular dynamics simulations

N719 adsorbed on TiO₂:

Two prototypical configurations of N719/TiO₂ were examined The two protons are located on the dye (A) or on the TiO₂ (B)

F. De Angelis, S. Fantacci, A. Selloni, M. Grätzel J. Am. Chem. Soc. 2007, 129, 14156.

Increasing the protons on TiO_2 lowers the C.B. (and therefore V_{OC}) Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, *J. Phys. Chem. B*, **2003**, 107, 8981.

Tuning the properties of Ru(II) TiO₂ sensitizers

Control of protonation/ conuterions

lon-coordinating ligands

Quaterpyridil ligands Trans isomers Stability/ Charge separation

Heteroleptic Ru(II) sensitizers: Ru-EDOT

A. Abbotto, F. De Angelis, S Fantacci, M. Grätzel et al. Chem Commun. 2008, 5318.

HOPV group Perugia

ICTP / SISSA Collaboration: R. Gebauer, S. Baroni Experiments at EPFL: Md. K. Nazeeruddin, M. Grätzel Financial support: <u>MIUR PRIN</u> 2008 <u>CNR EFOR</u> 2011 <u>IIT-SEED</u> 2009 <u>ESF</u> HOPV 2010 <u>EU-FP7</u>: NMP-2009 ENERGY-2010