

The Abdus Salam International Centre for Theoretical Physics

2269-7

Workshop on New Materials for Renewable Energy

17 - 21 October 2011

Modeling dye-sensitized solar cells: Understanding the mechanism, improving the efficiency

Filippo DE ANGELIS Istituto CNR di Scienze e Tecnologie Moleculari ISTM c/o Dipt. di Chimica, Univ. di Perugia I-06123 Perugia Italy

Modeling Dye-Sensitized Solar Cells:

Understanding the mechanism, improving the efficiency

Filippo De Angelis

Istituto CNR di Scienze e Tecnologie Molecolari (ISTM), c/o Dipartimento di Chimica, Università di Perugia, I-06123 Perugia, Italy

DSC: Principles of operation

In DSCs TiO₂ nanoparticles are sensitized with a light-harvesting sensitizer and are typically surrounded by a liquid electrolyte.

The dye-sensitizer captures photons and an electron/hole pair is generated.

The electron is injected into conduction band of TiO_2 and then flows into the external circuit.

The oxided dye is regenerated by the redox couple in the electrolyte.

Photocurrent: rate of electron injection (I= dq/dt)

Photovoltage: Position of the conduction band.

Dye-Sensitized Solar Cells: Flexible, colorful, transparent PVs

DYESOL-TATA (UK) / FUJIKURA (JPN)

S. Fantacci, F. De Angelis, A. Selloni
F. De Angelis, S. Fantacci, A. Selloni
F. De Angelis, S. Fantacci, M.K. Nazeeruddin
F. De Angelis, S. Fantacci, M. Grätzel et al.

J. Am. Chem. Soc. 2003, *125*, 4381. *Chem. Phys. Lett.* 2004, *389*, 204. *Chem. Phys. Lett.* 2005, *415*, 115. *J. Am. Chem. Soc.* 2005, *127*, 16835.

Anatase TiO₂ nanocrystals

H. G. Yang et al. Nature 453, 2008, 29

Catal. Today 85, 2003,932

Truncated tetragonal bipyramidal shape:

two flat, square surfaces are [001] facets and eight isosceles trapezoidal surfaces are [101] facets.

The [101] is the most thermodynamically stable surface, while the [001] is more reactive for dissociative adsorption of reactant molecules.

High surface area and large reactive surface \rightarrow higher photocatalytic activities.

Modeling of TiO₂ nanoparticles: Stoichiometric anatase (TiO₂)₃₈ and (TiO₂)₈₂ clusters of 1 and <u>2 nm dimensions exposing (101) surfaces</u>

B3LYP/3-21g* TD-DFT gap in water 3.20/3.41 eV

B3LYP/DZVP 3.13/3.35 eV

Experimental gap in acqueous solutions: 3.20 – 3.30 eV

F. De Angelis, A. Tilocca, A. Selloni J. Am. Chem. Soc. 2004, 126, 15024

Origin of sub-band gap states?

ingle and Multi-Wall TiO₂-NTs: Adsorption mode

Work in progress

F. Nunzi, F. De Angelis, *J. Phys .Chem*. C, 2010

Alignment of excited state potentials:

F. De Angelis, S. Fantacci, A. Selloni, Nanotechnology, 2008, 19, 424002.

Trap states in TiO₂

THE INTERACTION OF TWO TiO₂ NANOCRYSTALS (TiO₂)₃₆₇ THROUGH THE [101]-[101] SURFACES:

Estimating a contact surface area of 201 $Å^2$ at the interface, we calculate an energy interaction per area of **0.14 eV**/ $Å^2$.

We computed an interaction energy of 27.5 eV.

THE INTERACTION OF TWO TiO₂ NANOCRYSTALS (TiO₂)₃₆₇ THROUGH THE [001]-[001] and [101]-[001] SURFACES:

DOS FOR TWO TiO₂ NANOCRYSTALS [101]-[101]

DOS FOR A SINGLE TiO₂ NANOCRYSTAL

INTRODUCE SUB BAND-GAP STATES IN THE DOS

Ab initio molecular dynamics simulations

N719 adsorbed on TiO₂:

Two prototypical configurations of N719/TiO₂ were examined The two protons are located on the dye (A) or on the TiO₂ (B)

F. De Angelis, S. Fantacci, A. Selloni, M. Grätzel J. Am. Chem. Soc. 2007, 129, 14156.

Increasing the protons on TiO_2 lowers the C.B. (and therefore V_{OC}) Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, *J. Phys. Chem. B*, **2003**, 107, 8981.

Tuning the properties of Ru(II) TiO₂ sensitizers

Control of protonation/ conuterions

lon-coordinating ligands

Quaterpyridil ligands Trans isomers Stability/ Charge separation N621/Z907

Improved light harvesting

Heteroleptic Ru(II) sensitizers: Ru-EDOT

A. Abbotto, F. De Angelis, S Fantacci, M. Grätzel et al. Chem Commun. 2008, 5318.

Heteroleptic Ru(II) TiO₂ sensitizers

Ru-EDOT		N621	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	N945			
Sensitizer	Number of protons	Current mA/cm ²	Potential (mV)	Fill Factor	Efficiency at 1.5 AM		
N719	2	16.66	846	0.73	10.28		
N621	1	16.22	766	0.70	8.69		
K19	1	16.40	768	0.73	9.19		
N945	1	17.25	759	0.73	9.55		
R11-FDOT	2	191	663	0.72	9 11		

A considerable reduction of the open circuit potential (ca. 180 mV) and therefore of the overall efficiency is observed with heteroleptic sensitizers F. De Angelis, S. Fantacci, A. Selloni, M. Grätzel, M.K. Nazeeruddin *Nano Lett.* 2007, 7, 3189.

Adsorption of Homoleptic/Heteroleptic dyes on TiO₂

F. De Angelis, S. Fantacci, A. Selloni, M. Grätzel, M.K. Nazeeruddin *Nano Lett.* 2007, 7, 3189.

Dye

Effect of a dipole (30 D) on the TiO₂ c.b.:

The sensitizer dipole and adsorption alters the TiO_2 c.b. position

F. De Angelis, S. Fantacci, A. Selloni, M. Grätzel, M.K. Nazeeruddin *Nano Lett.* 2007, 7, 3189.

The success of N719: Adsorption geometry

Right (and tunable) number of protons; three anchoring points; reduced negative dipole compared to heteroleptic dyes

F. De Angelis, S. Fantacci, M. Grätzel, J. Phys. Chem. C, 2010.

ALIGNMENT OF THE N719@TiO2 ABSORPTION SPECTRA AND ENERGY LEVELS Dye@TiO₂ absorption Dye@TiO₂DOS spectrum Bare TiO₂ DOS -3.0 -3.46 Lowest dye \rightarrow dye excited state -3.5 -3.76 Lowest dye \rightarrow TiO₂ excited state Energy (eV) $S_0 \rightarrow S_{18}$ (Dye) $S_0 \rightarrow S_1(TiO_2)$ 1.88 eV 1.58 eV -5.0 --5.34 Dye@TiO2HOMO -5.5 -F. De Angelis, S. Fantacci, M. Grätzel, J. Phys. Chem. C, 2011.

Electronic structure of standalone organic dyes :

Dye	Solvent	$\lambda_{max}(nm)$	E _{exc} (eV)
D4	Ethanol	390	3.18
τΛ	Ethanol	386	3.21
LU	Acetonitrile	373	3.32
	Ethanol	441	2.81
D5	Methanol+Acid	474	2.62
	Acetonitrile	427	2.90
C217	Chloroform	551	2.25
JK2	Ethanol ⁷	436	2.84

Benchmark of quantum methods for organic dyes :

		TDDF	TDDFT					Wavefunction methods								
Dye	Λ	B3L	ΎР	MPW	/1K	C-B3	LYP	C	CSD	NE	VPT2	RI	-CC2	CAS	SSCF	
D4	0.52	3.1	0	3.4	3.46		-8	3	.53	3	.64	3	3.16		4.24	
LO	0.51	2.9	9	3.4	.0	3.4	3.45		3.59		3.49		3.16	4	.26	
D5	0.47	2.2	2.99 3.40 2.23 2.70 1.96 2.50 1.99 2.60 vell behave		'0	2.97		ļ	-		-		2.72		-	
C217	0.38	1.9	TDDFT B3LYP MPV 3.10 3.4 2.99 3.4 2.23 2.2 1.96 2.3 1.96 2.3 1.99 2.4 well behav d deprote .250 3.51 .075 3.46 .673 2.86 .924 2.67		0	2.64		ļ	-		-		2.50		-	
JK2	0.35	1.9	9	2.6	2.60		'8		-		-		2.68		-	
	TDDF	well	be	have	es 1	whe	n ir	ICr	easi	ng	the	dy	e CT			
	MPW1K B					B3L	YP						E	xp.		
Dye	protonat	ed	deprotonated pro			prote	tonated		(deprotonated						
	E _{exc}	F	E _{ex}	C.	f		E _{exc}		f		E _{exc}			E,	exc	
D4	3.17	1.250	3.5	;1	1.1.	39 []	2.81		1.053		3.07	C).935	3.	18	
LO	3.15	1.075	3.4	¹ 6	0.6	61	1 2.73		0.886		2.89	0).469	3.	21-	
					1									3.32		
D5	2.48 1.673 2.86 1.740		40	2.00)	1 20	1	2.38 1.129			2.	62-				
															.90	
C217	2.32	1.924	2.6	57	2.1	48	1.74	1	1.065		5 2.15		1.543		25	
JK2	2.45	1.549	2.8	31	1.7	14	1.82)	0.76	7	2.26	(0.880	2.	84	
M. Pastore, F. De Angelis, M. Grätzel, et <u>al. J. Phys. Chem. C. 2010.</u>																

TDDFT prediction of the ground and excited state oxidation potential of organic dyes

M. Pastore, F. De Angelis J. Phys. Chem. C 2011.

Effect of thermal averaging and of explicit solvation:

Effect of thermal averaging and of explicit solvation:

Solution thermally averaged absorption spectum:

M. Pastore, F. De Angelis Phys. Chem. Chem. Phys. 2011, in press.

Similar structure, different coupling

M. Pastore, F. De Angelis Phys. Chem. Chem. Phys. 2011, in press.

Sensitizer Dipole : Organic vs. Ru-dyes in SS-DSC

Chen, F. De Angelis, Md. K. Nazeeruddin, M. Grätzel, Nano Lett. 2009, 9, 2489.

Indoline dyes: Dye Aggregation on TiO₂

Aggregation on TiO₂: Electronic properties

		Mon	omer	Di	mer			
D	ye	Exc.	f	Exc.	f	Shift	Exp.	
				1.96	0.022			
D102	2.11	0.82	2.10	1.016	0 15	0.22		
			2.18	0.537				
			2.28	0.001				
D149		2.06	0.80	1.97	0.007		0.06	
	149			2.05	0.720	0.08		
	17/			2.07	0.784	0.00		
				2.23	0.001			
			Ev	cited	etatoe	-		

LUMOs **HOMOs**

Monomer Dimer

M. Pastore, F. De Angelis ACS Nano, 2010, 4, 556.

Stark effects in dye-sensitized heterointerfaces

For D149 an absorbance blueshifted has been measured when applying an electric field perdpendicular to the surface

Cappel et al. J. Am. Chem. Soc. 2010, 132, 9096 / Meyer et al. J. Am. Chem. Soc. 2010

Calculated absorption spectra

M. Pastore, F. De Angelis J. Phys. Chem. Lett. 201

Solid State DSSC: Spiro-OMe-TAD

M. Grätzel et al. Nature 1998, 395, 583

Spiro-OMe-TAD: Electronic and optical properties

Less positive oxidation potential than I⁻/I₃⁻
The neutral form absorbs in the UV

U. Bach, PhD Thesis, EPFL, 2000

Spiro-OMe-TAD: Optical properties of the oxidized species

The oxidized forms absorbs strongly in the Vis

U. Bach, PhD Thesis, EPFL, 2000

Spiro-OMe-TAD: Simulated absorption spectra

ci, I. De Angens J. I hys

HOPV group Perugia

ICTP / SISSA Collaboration: R. Gebauer, S. Baroni Experiments at EPFL: •Md. K. Nazeeruddin, M. Grätzel Financial support: <u>MIUR PRIN 2008</u> <u>CNR EFOR 2011</u> <u>IIT-SEED</u> 2009 <u>ESF</u> HOPV 2010 <u>EU-FP7</u>: <u>NMP-2009</u> ENERGY-2010