

The Abdus Salam International Centre for Theoretical Physics

2269-9

Workshop on New Materials for Renewable Energy

17 - 21 October 2011

Photocatalytic H2 and added-value byproducts: The role of metal oxide systems in their synthesis from liquid oxygenates

> Paolo FORNASIERO Dept. of Chemcial Sciences University of Trieste Italy

Photocatalytic H₂ and added-value byproducts: the role of metal oxide systems in their synthesis from liquid oxygenates

Trieste 17-10-2011

Outline

- 1. Introduction: motivation and context
- 2. Nanostructured powder materials
 - CuO_x@TiO₂
 - CuO_x or Pd on B,N co-doped TiO₂
 - Pt, Au and Pt-Au on TiO_2
- 3. Supported nanoarchitectures
 - CuO and Cu_2O
 - Bare and Au doped CuO_x/TiO_2
 - Bare and F- doped Co_3O_4
 - Ag/ZnO
- 4. Perspectives

Motivation of H₂ production

Hydrogen production strategies and photo-catalysis

Photocatalytic H₂ production

Fujishima A, Honda K (1972) Nature 238:37 Renewable and Sustainable Energy Reviews **11** (2007) 401-425 Topics in Catalysis 49 (2008) 4-17

Photocatalytic H₂ production

Fujishima A, Honda K (1972) Nature 238:37 Renewable and Sustainable Energy Reviews **11** (2007) 401-425 Topics in Catalysis 49 (2008) 4-17

Photoreforming

 $C_xH_yO_z + (2x - z)H_2O \rightarrow x CO_2 + (2x + y/2 - z)H_2$

Outline

- 1. Introduction: motivation and context
- 2. Nanostructured powder materials
 - CuO_x@TiO₂
 - CuO_x or Pd on B,N co-doped TiO₂
 - Pt, Au and Pt-Au on TiO_2
- 3. Supported nanoarchitectures
 - CuO and Cu_2O
 - Bare and Au doped CuO_x/TiO_2
 - Bare and F- doped Co_3O_4
 - Ag/ZnO
- 4. Perspectives

Selection of the metal

Fundamental conditions: largely available, low cost, non toxic,...

- *ii)* Photodeposition of M

Redox potential of Mⁿ⁺/M > energy edge of the conduction band

1					1	- VIIIB -			
3 IIIB	4 IVB	5 / VB	6 VIB	7 VIIB	8	9	10	11 18	12 IIB
21 44.956	22 47.867	23 50.942	24 51.996	25 54.938	26 55.845	27 58.933	28 58.693	29 63.546	30 65.39
Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC
39 88.906	40 91.224	41 92.906	42 95.94	43 (98)	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41
Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd
YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM
57-71	72 178.49	73 180.95	74 183.84	75 186.21	76 190.23	77 192.22	78 195.08	79 196.97	80 200.59
La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg
Lanthanide	HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY
89-103	104 (261)	105 (262)	106 (266)	107 (264)	108 (277)	109 (268)	110 (281)	111 (272)	112 (285)
Ac-Lr	Rſ	Db	Sg	IBh	IHIS	Mit	Uum	Uuu	Uub
Actinide	RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	UNUNNILIUM	UNUNUNIUM	UNUNBIUM

Photoreforming: the CuO_x@TiO₂ system

P. Fornasiero et al., The Journal of Physical Chemistry C 113 (2009), 18069-18074

Encapsulation of preformed metal nanoparticles into porous MO_x through different methodologies.

P. Fornasiero et al., ChemSusChem 3 (2010), 24-42

Synthesis: CuO_x –TiO₂

1. Microemulsion method

$Ti(i-PrO)_{4} \xrightarrow{in cyclohexane}_{H_{2}O / hydrazine} \xrightarrow{Precipitation}_{Aging r.t.} Washing Calcinatic$	$ \text{TiO}_2$
---	-----------------

2. Impregnation method

 $TiO_2 + Cu(NO_3)_2$ in EtOH

IMP $Cu(x\%)/TiO_2$

Stirred 2 h in the dark, dried and calcined 1 h at 450 °C

Basic characterization of $CuO_x @TiO_2$ system vs $CuO_x -TiO_2$ system

		Composition (%)			
	BET Surface area (m²g)	Anatase	Rutile	Brookite	
IMP Cu(2.5%)/TiO ₂	64	92	3	5	
Cu(2.5)@TiO ₂	69	91	6	3	

P. Fornasiero et al., Nanoscience and Nanotechnology Letters 1 (2009), 128-133

XAFS Characterization

• Cu(II) in the fresh samples

Sample	Shell	N	R (nm)	D _M (nm)
Cu(2.5%)@TiO ₂	Cu-O	3.8	0.1962	-
fresh	Cu-Cu	-	-	
Cu(2.5%)@TiO ₂	Cu-O	4.0	0.1975	0.8
irradiated	Cu-Cu	2.2	0.2572	

Cu@TiO₂

- Partial reduction of Cu after irradiation
- Very small Cu particles

Cu/TiO₂

• Very small amount of reduced Cu after irradiation.

Sample	Shell	N	R (nm)	D _M (nm)
Cu(2.5%)/TiO ₂	Cu-O	3.5	0.1989	-
Fresh	Cu-Cu	-	-	
Cu(2.5%)/TiO ₂	Cu-O	3.1	0.1959	-
Irradiated	Cu-Cu	-	-	

P. Fornasiero et al., J. Phys. Chem. A, 2010, 114 (11) 3916-3925

HAADF-STEM Characterization

Photocatalytic hydrogen production

PHOTOCATALYTIC ACTIVITY 2.5% Cu-TiO₂ traditional vs advanced

P. Fornasiero et al., The Journal of Physical Chemistry A 114 (2010), 3916-3925

CATALYTIC ACTIVITY: H₂ PRODUCTION FROM **ETHANOL**

Possible pathway

P. Fornasiero et al., ChemCatChem 3 (2011), 574-577

CATALYTIC ACTIVITY: H₂ PRODUCTION FROM GLYCEROL

Isopropanol and glucose photoreforming

P. Fornasiero et al., European Journal of Inorganic Chemistry 2011 (2011), 4309-4323

Pt-TiO₂ photo-catalysts : stability under glycerol photoreforming

D. I. Kondarides, V. M. Daskalaki, A. Patsoura, X. E. Verykios, *Catalysis Letters* 2008, 122, 26-32

Photocatalytic stability: 2.5% CuO_x@TiO₂

50% water - 50% ethanol

$$CH_3CH_2OH + 3H_2O \xrightarrow{h_V, cat} 6H_2 + 2CO_2$$

time / min

LEACHING Cu

P. Fornasiero et al., The Journal of Physical Chemistry A 114 (2010), 3916-3925

Visible light driven photocatalyst: Pd or CuO_x on

B, N co-doped TiO₂

P. Fornasiero, Chem. Phys. 339 (2007) 111-123.

Synthesis of the catalyst

Metal photodeposition

Support + metal nitrate

50% water- 50% methanol

UV-vis irradiation

Pd(0.5%)/TiO₂ Pd(0.5%)/TiO₂-B,N Cu(1.0%)/TiO₂ Cu(1.0%)/TiO₂-B,N

HAADF-STEM

- Highly dispersed metal nanoparticles
- Deposition as M⁰ (XANES-EXAFS)
- Texture and phase composition are not affected

P. Fornasiero, ChemCatChem 3 (2011), 574-577

CATALYTIC ACTIVITY: ORIGIN OF Vis ACTIVITY

UV irradiation

As proposed for Au/TiO₂ A. Primo, A. Corma and H. Garcia, *Phys. Chem. Chem. Phys.* **13** (2011), 886-910.

Enhanched photocatalytic activity of hydrogenated black TiO₂

Xiaobo Chen, et al., Science 331, 746 (2011)

Outline

- 1. Introduction: motivation and context
- 2. Nanostructure powder materials
 - $CuO_x@TiO_2$
 - CuO_x or Pd on B,N co-doped TiO₂
 - Pt, Au and Pt-Au on TiO_2
- 3. Supported nanoarchitectures
 - CuO and Cu_2O
 - Bare and Au doped CuO_x/TiO_2
 - Bare and F- doped Co_3O_4
 - Ag/ZnO
- 4. Perspectives

Development of supported CuO_x photo-catalysts

Cu₂O

CuO

Cu nanustructure and H₂ photo-production from methanol water solution

P. Fornasiero et al., ChemSusChem 2 (2009), 230-233.

Bare and Au doped CuO_x/TiO_2 photo-catalysts

Activity vs stability

P. Fornasiero et al. ,Advanced Functional Materials 21 (2011), 2611-2623

Oxygen assisted H_2 production over Co_3O_4 photocatalysts

P. Fornasiero et al., Chem. Vap. Deposition 2010, 16, 296

Ag/ZnO nanocomposite photocatalysts

H₂O/CH₃OH solutions

P. Fornasiero et al., International Journal of Hydrogen Energy (2011), in press, doi:10.1016/j.ijhydene.2011.09.04

Perspectives

Photocatalytic reforming of renewable oxygenates to produce hydrogen is an attractive research topic.

In order to transform it into a technological process, we must:

- Increase photocatalytic efficiency
- Increase activity under visible light irradiation
- Increase stability
- Explore its potential use in water-water treatments
- Explore simultaneous hydrogen production and valorisation of the partially oxidized byproducts

ACKNOWLEDGEMENTS

Dr. D. Barreca, Dr. A. Gasparotto, Prof. E. Tondello University of Padova and CNR Dr. V. Dal Santo, Dr. R. Psaro, CNR - Milano

- University of Trieste
- INSTM Consortium
- ICCOM-CNR
- Fondazione CRTrieste
- Fondo Regione FVG

Thank you for your attention