

2291-7

Joint ICTP-IAEA Course on Science and Technology of Supercritical Water Cooled Reactors

27 June - 1 July, 2011

Part 4 SUPERCRITICAL WATER-COOLED NUCLEAR-REACTOR CONCEPTS: REVIEW AND STATUS

Igor PIORO

Faculty of Energy Systems and Nuclear Science University of Ontario Institute of Technology 2000 Simcoe Str. North Oshawa ON L1H 7K4 Canada

Part 4 Supercritical Water-Cooled Nuclear-Reactor Concepts: Review and Status

Pressure-temperature diagram of water with typical operating conditions of SCWRs, PWRs, CANDU-6 reactors and BWRs

Temperature, °C

Currently, USA don't develop an SCWR concept. However, the shown parameters are typical to other SCWR concepts, for example, HPLWR or Super LWR.

2

Basis for Development SCWRs

- 1. Pressurized Water Reactor's technology (current pressures up to 16 MPa)
- 2. Boiling Water Reactor's once-through or direct cycle
- 3. Supercritical "steam" generator's technology and turbines from coal-fired power plants
- 4. Experience of nuclear steam superheating at several nuclear power plants (Russia and USA)

3

Types of SCWRs

The SCWR concepts follow two main types, the use of either (a) a large reactor pressure vessel with a wall thickness of about 0.5 m to contain the reactor core (fuelled) heat source, analogous to conventional PWRs and BWRs, or (b) distributed pressure tubes or channels analogous to conventional CANDU[®] and RBMK nuclear reactors.

The pressure-vessel SCWR design is developed largely in the USA, EU, Japan (Oka et al. 2010), Korea and China and allows using a traditional high-pressure circuit layout.

The pressure-channel SCWR design is developed largely in Canada and in Russia to avoid a thick wall vessel.

The vast majority SCWR concepts are thermal spectrum reactors. However, a fast neutron spectrum core is also possible (Oka et al. 2010).

CANDU[®] (CANada Deuterium Uranium) is a registered trademark of Atomic Energy of Canada Limited (AECL).

4

Schematics of Pressure-essel SCWR

5

Pressure-Channel SCW CANDU Reactor Concept

Simplified cycles of SCP thermal & NPPs

(based on Pioro I., Zirn U., Duffey R., Naidin M., Mokry S., Gospodinov Ye. and Baig F., 2008. Supercritical Water-Cooled Nuclear Reactors: Thermodynamic-Cycles Options, Proceedings of the 6th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT-2008), June 30 - July 2, Pretoria, South Africa, Paper #PI1.

No-Reheat Cycle

No-Reheat Cycle

9

Joint ICTP-IAEA Course on Science and Technology of SCWRs Trieste, Italy, 27 June - 1 July 2011 (SC06) Introduction to Thermodynamics

International Atomic Energy Agency

No-Reheat Cycle

Stage	Heat Transfer Rate (MW)
Preheater	1255
Reactor	1705
Turbine	-1200
Condenser	-1760

- Q_{in} total = 2960 MW_{th}
- W_{useful} = 1200 MW_{el}
- Q_{loss} = 1760 MW_{th}
- Thermal Efficiency = 40%

Joint ICTP-IAEA Course on Science and Technology of SCWRs Trieste, Italy, 27 June - 1 July 2011 (SC06) Introduction to Thermodynamics

Advantages

- Simplified layout
- Lower capital cost

Disadvantages

- Lower efficiency
- There are no SCW turbines without reheat

Single-Reheat Cycle

Single-Reheat Cycle

Joint ICTP-IAEA Course on Science and Technology of SCWRs Trieste, Italy, 27 June - 1 July 2011 (SC06) Introduction to Thermodynamics

International Atomic Energy Agency

Single-Reheat Cycle

Stage	Heat Transfer Rate (MW)
Preheater	970
Reactor	1320
HP Turbine	-300
Reheater	408
LP Turbine	-900
Condenser	-1500

- Q_{in} total = 2700 MW_{th}
- W_{useful} = 1200 MW_{el}
- $Q_{loss} = 1500 \text{ MW}_{th}$
- Thermal Efficiency = 45%

Joint ICTP-IAEA Course on Science and Technology of SCWRs Trieste, Italy, 27 June - 1 July 2011 (SC06) Introduction to Thermodynamics

Advantages

- Higher thermal efficiency
- Single-reheat turbines are widely used at SCW thermal power plants

Disadvantages

 Requires nuclear steam reheat

Double-Reheat Cycle

(SC06) Introduction to Thermodynamics

Double-Reheat Cycle

Joint ICTP-IAEA Course on Science and Technology of SCWRs Trieste, Italy, 27 June - 1 July 2011 (SC06) Introduction to Thermodynamics

International Atomic Energy Agency

Double-Reheat Cycle

Stage	Heat Transfer Rate (MW)
Preheater	820
Reactor	1115
HP Turbine	-192
Reheater 1	275
IP Turbine	-200
Reheater 2	220
LP Turbine	-810
Condenser	-1230

• Q_{in} total = 2430 MW_{th}

Q_{loss} = 1230 MW_{th}

Thermal Efficiency = 49%

Joint ICTP-IAEA Course on Science and Technology of SCWRs Trieste, Italy, 27 June - 1 July 2011 (SC06) Introduction to Thermodynamics

Advantages

Highest thermal efficiency

Disadvantages

- Requires double nuclear steam reheat
- There are few SCW doublereheat turbines

Single-Reheat Cycle with Heat Regeneration

Single-Reheat Cycle with Heat Regeneration

Steam Temperature: Main / Reheat, °C	625	/ 625
Stage	m, kg/s	Q, MW_{th}
Pumps (total)	N/A	27
Feedwater Heater (HX1)	650	444
Deaerator	650	199
Feedwater Heater (HX2)	937	416
Reactor	937	1821
HP Turbine	937	-404
Reheater	749	428
LP Turbine	650	-796
Condenser	508	-1076
Efficiency, %	5	2.7
Joint ICTP-IAEA Course on Science and Technology of SCWRs Trieste, Italy, 27 June - 1 July 2011 18 Inte	ernational Atomic En	ergy Agency

(SC06) Introduction to Thermodynamics

Schematic of single-reheat regenerative thermodynamic cycle for 1200 MW_{el} PT SCW NPP

Schematic of in-direct single-reheat regenerative thermodynamic cycle for 1200 MW_{el} PV or PT SCW NPP (prepared by H. Thind, UOIT)

Schematic of direct no-reheat regenerative thermodynamic cycle for 1200 MW_{el} PV or PT SCW NPP

Joint ICTP-IAEA Course on Science and Technology of SCWRs Trieste, Italy, 27 June - 1 July 2011 (SC06) Introduction to Thermodynamics

International Atomic Energy Agency

21

Schematic of in-direct no-reheat regenerative thermodynamic cycle for 1200 MW_{el} PV or PT SCW NPP (prepared by H. Thind, UOIT)

Schematic of dual no-reheat primary (SCW) loop and single-reheat secondary (superheated steam) loop regenerative thermodynamic cycle for 1200 MW_{el} PV or PT SCW NPP (prepared by H. Thind, UOIT)

Schematic of dual single-reheat regenerative thermodynamic cycle for 1200 MW_{el} PT SCW NPP (AECL): High-pressure units located in Reactor Building for increased safety.

Selected parameters of proposed SCW NPP direct cycles

Parameters	Unit	Description / Value	Description / Value	
Cycle type	-	Direct Single-Reheat	Direct No-Reheat	
Reactor type	-	Pressure Tube		
Reactor spectrum	-	Thermal		
Fuel	-	UO ₂ (ThO ₂)	
Cladding material	-	Inconel or Stainless steel		
Reactor coolant	-	H ₂	2 <mark>0</mark>	
Moderator	-	$\overline{D_2O}$		
Power Thermal	MW _{th}	2300	2340	
Power Electrical	MW _{el}	1200	1200	
Thermal Efficiency	%	52*	51*	
Pressure of SCW at inlet	MPa	25.8	25.8	
Pressure of SCW at outlet (estimated)	MPa	25	25	
T _{in} coolant (SCW)	°C	350	350	
T _{out} coolant (SCW)	°C	625	625	
Pressure of SHS at inlet	MPa	6.1	_	
Pressure of SHS at outlet (estimated)	MPa	5.7	-	
T _{in} coolant (SHS)	°C	400	-	
T _{out} coolant (SHS)	°C	625	_	
Power thermal SCW channels	MW _{th}	1870	2340	
Power thermal SRH channels	MW _{th}	430	_	
Power thermal / SCW channel	MW _{th}	8.5	8.5	
Power thermal / SRH channel	MW _{th}	5.5	_	
# of fuel channels (total)	-	300	270	
# of SCW channels	-	220	270	
# of SRH channels	-	80	_	
Total flow rate of SCW	kg/s	960	1190	
Total flow rate of SHS	kg/s	780	-	

*In general, indirect cycles will have lower thermal efficiencies up to several per cent than those of the corresponding direct cycles.

25

Chemical reaction steps and basic parameters of the copper-chlorine cycle for hydrogen co-generation

Step	Reaction	Temperature Range (°C)	Feed/Output		
1	$\begin{array}{l} 2Cu(s) + 2HCI(g) \rightarrow CuCI(I) \\ + H_2(g) \end{array}$	430 – 475	Feed: Output:	Electrolytic Cu + dry HCl + Q H ₂ + CuCl(I) salt	
2	$2CuCl(s) \rightarrow 2CuCl(aq)$ $\rightarrow CuCl_2(aq) + Cu(s)$	Ambient (electrolysis)	Feed: Output:	Powder/granular CuCl and HCl + V Cu and slurry containing HCl and CuCl ₂	
3	$CuCl_2(aq) \rightarrow CuCl_2(s)$	<100	Feed: Output:	Slurry containing HCl and $CuCl_2 + Q$ Powder/granular $CuCl_2 + H_2O/HCl$ vapors	
4	$\begin{array}{l} 2\text{CuCl}_2(s) + \text{H}_2\text{O}(g) \rightarrow \\ \text{CuO*CuCl}_2(s) + 2\text{HCl}(g) \end{array}$	400	Feed: Output:	Powder/granular $CuCl_2 + H_2O(g) + Q$ Powder/granular $CuO^*CuCl_2 + 2HCI(g)$	
5	$\begin{array}{l} CuO^*CuCl_2(s) \rightarrow 2CuCl(I) + \\ 1/2O_2(g) \end{array}$	500	Feed: Output:	Powder/granular CuO* CuCl ₂ (s) + Q Molten CuCl salt + oxygen	
Q - thermal energy, V - electrical energy					

Heat-extraction points for H₂ cogeneration associated with proposed no-reheat SCW NPP

Heat-extraction points for H₂ cogeneration associated with proposed single-reheat SCW NPP

27

CONCLUSIONS

The vast majority of the modern SC turbines are single-reheat-cycle turbines. Just a few double-reheatcycle SC turbines have been manufactured and put into operation. However, despite their efficiency benefit double-reheat-turbines have not been considered economical.

Major inlet parameters of the current and upcoming single-reheat-cycle SC turbines are: the main or primary SC "steam" – pressure of 25 – 30 MPa and temperature of 600 – 625°C; and the reheat or secondary subcritical-pressure steam – P = 3 - 7 MPa and T = 600 - 625°C.

In order to maximize the thermal-cycle efficiency of the SCW NPPs it would be beneficial to include nuclear steam reheat. Advantages of a single-reheat cycle in application to SCW NPPs are:

- 1) High thermal efficiency (about 50%), which is the current level for SC thermal power plants and close to the maximum thermal efficiency achieved in the power industry at combined-cycle power plants (up to 55%).
- 2) High reliability through proven state-of-the-art turbine technology; and
- 3) Reduced development costs accounting on wide variety of SC turbines manufactured by companies worldwide.

The major disadvantage of a single-reheat cycle implementation in SCW NPPs is the requirement for significant changes to the reactor-core design due to addition of the nuclear steam-reheat channels at subcritical pressures.

Based on the abovementioned analysis, the direct or in-direct single-reheat cycles with heat regeneration and the corresponding arrangement appear to be the most advantageous as a basis for an SCW NPP. However, other cycles, for example, dual cycles might be considered.

References

- 1. Pioro, I.L. and Duffey, R.B., Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications, ASME Press, New York, NY, USA, 2007, 334 pages.
- 2. Oka, Yo., Koshizuka, S., Ishiwatari, Y. and Yamaji, A., 2010. Super Light Water Reactors and Super Fast Reactors, Springer, 416 pages and 200 figures.

... Thank you for your attention!

E-mail: Igor.Pioro@uoit.ca

