

2291-9

Joint ICTP-IAEA Course on Science and Technology of Supercritical Water Cooled Reactors

27 June - 1 July, 2011

SCWR CORE DESIGN 2: LWR TYPE

Xiaojing LIU

Shanghai Jiao Tong University School of Nuclear Science and Engineering Dongchuan Road 800 Shanghai 200 240 PEOPLE'S REPUBLIC OF CHINA

SCWR Core Design 2: LWR Type

Xiaojing LIU School of Nuclear Science and Engineering, Shanghai Jiao Tong University

Objectives

- Contrast and compare with existing LWR designs
- Introduce various SCWR designs based on LWR technology
- Compare a thermal-, fast-, and mixedneutron spectra cores

Supercritical water character

Joint ICTP-IAEA Course on Science and Technology of SCWRs, Trieste, Italy, 27 June - 1 July 2011 (SC08) SCWR Core Design 2: LWR Type

International Atomic Energy Agency

Comparing to the current LWR

Comparing to the current LWR

- Simple & compact plant systems
- No water/steam separation
- Low flow rate(1/10), high enthalpy coolant
- High temperature & thermal efficiency (510 C, ~44%)
- Flexibility of the neutron spectrum, increase the utilization of the fuel
- Utilizations of current LWR and Supercritical FPP technologies
- Major components are used within the temperature range of past experiences

Comparing to the current LWR(FA)

Type Parameter	AP1000	EPR	ESBWR	SCWR*
Fuel diameter (mm)	9.5	9.5	10.26	10.2
Pitch (mm)	10.8	12.6	12.95	11.2
Cladding thickness (mm)	0.57	0.625	3.2	0.63
Cladding material	ZIRLO™	Zircaloy Zircaloy-2		Stainless Steel
Fuel arrangement	17×17 square	17×17 square	10×10 square	25×25 square
Fuel rod No./ FA	264	264	92	300
Average linear heat (w/cm)	188	154.9	151	180
FA assembly size (mm)	210	215.04	-	292.2
Fuel enrichment (%)	0.74-4.235	-5%:UO2 -7.4%:MOX	-	4.0-6.2
Active height (m)	4.27	4.2	3.0	4.2

7

Comparing to the current LWR (Core)

Type Parameter	AP1000	EPR	ESBWR	SCWR*
Fuel bundle number	157	241	1132	121
Core diameter (m)	3.04	3.767	5.883	3.73
Thermal power (MW)	3400	4250	4500	2744
Electricity power (MW)	1090	1500	1600	1200
Pressure (MPa)	15.51	15.5	8.62	25
Coolant flow rate (t/h)	48488	75347	34453	5104.8
Coolant inlet temp. (C)	279.4	295.3	269-272	280
Coolant outlet temp. (C)	322.3	328.2	288	500

*Japan thermal design Kamei, et al., ICAPP'05, Paper 5527

Challenges of SCWR

- Extreme operating conditions
- High pressure
- high temperature
- high heat flux
- neutron irradiation

\langle		
		~
	2	/

- Challenges in core/fuel assembly design
- Large property variation
- non-uniformity of moderation
- sensitive to hot channel factor
- non-uniformity of local heat transfer
- upper limit of cladding temperature

Large number of FA and Core designs

FA design summary

SCWR FA design examples

SCWR core design examples FA design

Design requirements	→ Solution	
Low flow rate per unit power (< 1/8 of LWR) due to large ⊿T of once-through system	Narrow gap between fuel rods to keep high mass flux	
Thermal spectrum core	Many/Large water rods	
Moderator temperature below pseudo-critical	Inculation of water red well	
Reduction of thermal stress in water rod wall	Insulation of water rod wall	
Uniform moderation	Uniform fuel rod arrangement	
Control rod guide tube UO_2 fuel rod $UO_2 + Gd_2O_3$ fuel rod OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	Stainless Steel	
Whater-reactourse on S of SCWRs, Trieste, Italy, 27 (SC08) SCWR Core Design	International Atomic Energy Agency	

SCWR core design examples Coolant flow scheme

Flow directions

	Coolant	Moderator
Inner FA	Upward	Downward
Outer FA	Downward	Downward

To keep high average coolant outlet temperature

SCWR core design examples

SCWR Design Concepts in Europe:

The High Performance Light Water Reactor (HPLWR)

Assembly design

- Thermal neutron spectrum
- Three heat-up steps

HPLWR Core Design Analyses

Rel. power in ¼ core at beginning of an equilibrium cycle

Joint ICTP-IAEA Course on Science and Technology of SCWRs, Trieste, Italy, 27 June - 1 July 2011 (SC08) SCWR Core Design 2: LWR Type Coupled neutronic / thermalhydraulic analyses of

- Core power distribution
- Burn-up analyses
- Optimization of fuel shuffling
- Effect of control rods and burnable poisons
- Coolant mixing inside assemblies
- Uncertainties
- Single fuel rod predictions

Analyses of Coolant and Moderator Flow

Twisted streamlines caused by wire wrap spacers

CFD-Analysis

CFD and system code analyses of

- Heat transfer and flow
 inside assemblies
- Mixing in plenums above and below the core
- Feedwater flow and heat transfer inside the pressure vessel

SCWR Core Design Concepts: The Super Fast Reactor, Japan

Reduce void reactivity and the local power peaking

Proposal of SCWR-M Core

	Thermal core	Fast core
Core & FA design (mechanical)	X	\checkmark
Cladding temperature	X	\checkmark
Heterogeneity (hot channel factor)	X	\checkmark
Void reactivity feedback (safety)	√	X
Water storage in RPV (safety)	√	X
Enrichment	√	X
Conversion ratio (sustainability)	X	\checkmark
Power density	X	\checkmark

SCWR-M Core Structures (SJTU)

Joint ICTP-IAEA Course on Science and Technology of SCWRs, Trieste, Italy, 27 June - 1 July 2011 (SC08) SCWR Core Design 2: LWR Type

International Atomic Energy Agency

FA optimization

P/d Diameter wall clearance

- Thermal FA two-row fuel assembly design (uniform moderation)
- Axial multilayer fuel assembly to flat the power profile and increase the conversion ratio

FA Structures

Multilayer FA (thermal)

Multilayer FA (fast)

FA Parameters

Design parameter	Thermal FA	Fast FA
Diameter of fuel pins, mm	8.0	8.0
Pitch-to-diameter ratio,-	1.20	1.20
Assembly side, mm	177.2	177.2
Fuel composition, -	UO ₂	MOX
Fuel enrichment, %	5.0; 6.0; 7.0	24.0
Conversion ratio, -	0.6	1.01
Fuel temperature reactivity coefficient, 10-5/K	- 1.72	- 2.65
Coolant reactivity coefficient*, 10 ⁻⁵ /K	- 27.9	- 5.20
Moderator reactivity coefficient, 10 ⁻⁵ /K	-100.0	

* Change the water temperature in the coolant and moderator channel respectively to get the reactivity coefficient.

SCWR-M Core Parameters

Design parameter	Thermal	Fast	Whole core
Thermal power (MW)	2400.0	1400.0	3800.0
Electrical power (MW)		_	1650.0
Core height (m)	4.5	2	—
Equivalent diameter (m)	3.4	2.14	3.4
No. of fuel assembly (-)	164	120	284
Power density (MW/m ³)	100.89	75.74	90.26
Moderator fraction (%)	20.0	_	

Coupling Analysis Method

Measures to improve the SCWR-M

- The fast and thermal zones are divided into 2 parts with different enrichment.
- Increase the mass flow rate in the fuel assemblies, which have higher power density and non-uniform pin-power distributions
- Reduce the moderator mass fraction from 25% to 20%, to provide a higher coolant mass flux to reduce the peak cladding temperature.
- Enlarge the clearance of the peripheral fuel rod to 1.5mm, to provide a better coolability of the fuel rods near the assembly wall.

SCWR-M Core Optimization Results

radial distribution

axial distribution

FA Power and Flow Distribution

	0000000	000000		5555555	2777775			
0.958	0.956	0.956	0.956	0.853	1.086	1.125	1.063	0.822
0.956	0.956	0.956	0.958	0.860	1.096	1.125	1.059	0.81
0.956	0.956	0.958	0.972	0.916	1.279	1.135	1.042	0.79:
0.956	0.958	0.972	0.915	1.262	1.137	1.216	0.992	0.73:
0.853	0.860	0.916	1.262	1.152	1.280	1.130	0.968	0.629
1.086	1.096	1.279	1.137	1.280	1.166	1.062	0.797	
1.125	1.125	1.135	1.216	1.130	1.062	0.839		
1.063	1.059	1.042	0.992	0.968	0.797			
0.822	0.815	0.793	0.733	0.629				

Power distribution

1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18
19	20	21	22	23	24	25	26	27
28	29	30	31	32	33	34	35	36
37	38	39	40	41	42	43	44	45
46	47	48	49	50	51	52	53	
54	55	56	57	58	59	60	1 00	0.00
61	62	63	64	65	66		0.91	0.80
67	68	69	70	71		-	1.23	1.16 1.66

Flow distribution

Sub channel scale results

Results	Thernal(FA56)	Fast (FA32)
Max. linear heat rate (kW/m)	36.18	42.09
Max. coolant temperature (°C)	614.43	542.44
Hot channel factor (-)	1.264	1.563
Max. moderator temperature (°C)	368.10	—
Max. cladding temperature (°C)	725.12	708.90
Max. fuel temperature (°C)	1688.08	2089.93

Conclusions

- Big potential advantage of SCWR comparing to LWR
- A technical review of the LWR-SCWR: Japan and Europe, Thermal and fast spectrum
- The development and character of the SCWR-M

References

- **1.** U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, A Technology Roadmap for Generation IV Nuclear Energy Systems. U.S., 2002.
- 2. Cheng X., Liu X.J., Yang Y.H. A Mixed Core for Supercritical Water-cooled Reactors. Nuclear Engineering and Technology, 2008, 40:117-126.
- **3.** Schulenberg T., Starflinger J., Heinecke J. Three Pass Core Design Proposal for a High Performance Light Water Reactor. Progress in Nuclear Energy, 2008, 50: 526-531.
- 4. Schulenberg T., Starflinger J. European Research Project on High Performance Light Water Reactors, Proceedings of 3rd International Symposium on Supercritical Water-cooled Reactors-Design and Technology, 2007. Shanghai, China, 2007.
- 5. Kamei K., Yamaji A., Ishiwatari Y. Fuel and Core Design of Super LWR with Stainless Steel Cladding, Proceedings of 2005 International Congress on Advances in Nuclear Power Plants (ICAPP '05),2005. Seoul, Korea, 2005.
- 6. Yoo J., Oka Y., Ishiwatari Y. et al. Subchannel Analysis of Supercritical Light Watercooled Fast Reactor Assembly. Nuclear Engineering and Design, 2007, 237:1096-1105.
- 7. Liu, X.J., Cheng, X., Coupled Thermal-hydraulics and Neutron-physics Analysis of SCWR with Mixed Spectrum Core, Progress in Nuclear Energy, 2010, 52(7),640-647.
- 8. Liu, X.J., Yang, T., Cheng, X., Core and Sub-channel Analysis of SCWR With Mixed Spectrum Core, 2010, Annals of Nuclear Energy, 2010, 37(12),1674-1682.
- **9.** AP1000 Design Control Document

... Thank you for your attention!

email: xiaojingliu@sjtu.edu.cn

Joint ICTP-IAEA Course on Science and Technology of SCWRs, Trieste, Italy, 27 June - 1 July 2011 (SC08) SCWR Core Design 2: LWR Type

32

