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Objectives

Objectives of this presentation are to:

• Compare with existing LWR

• TH challenges deriving from SCWR

• Code development (Sub channel, system)
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Compare with existing LWR
Type

Parameter
Current LWR SCWR

Pressure (MPa) 7.5/15.5 25.0

Outlet temperature (C) 290/330 >500

Enthalpy increase (KJ/kg) 270/200 >1300

Mass flux (kg/m2-s) 1648/3200 <1000

Density variation(kg/m3) 750—>200/720—>650 770—>80

Fuel arrangement square square/triangular

Pitch/diameter (-) >1.3 <1.2

Fuel assembly design Open/closed Closed 

Two phase flow occur not occur

CHF phenomenon occur not occur

Downward flow not occur occur

Counter-current  flow not occur occur
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Challenges deriving from the TH properties
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Strange  properties
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Heat transfer of current LWR

� simple correlation for normal HT

� lower value of T w-Tsat

� weak dependence with heat flux

� sharp temperature increase at CHF
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Special feature

� Strong dependence on heat flux

� HTD possible

� More complicated in rod bundles

Heat transfer of SCWR
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Special feature

State-of-the-art

� No reliable prediction, even for simple 
tubes 

� Limited test data for SCWR parameters

� Very limited test data in rod bundles

� Main efforts in CFD

� Very limited efforts in experiments

� Strong dependence on heat flux

� HTD possible

� More complicated in rod bundles

Heat transfer of SCWR
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� large number of studies since 50’s

� Mainly empirical correlations 
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Up to 12 numbers are used in one correlation!

� Future needs 

- more test data, incl. micro-scale test data 

- simple & mechanistic models
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Heat transfer deterioration 

the reduction in the heat transfer coefficient, or the increase 
in the wall temperature behaves rather smoothly
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Problem arise from large enthalpy rise

�high coolant outlet temperature
�multi-path design
�increasing the inlet temperature

13



International Atomic Energy Agency
Joint ICTP-IAEA Course on Science and Technology 
of SCWRs, Trieste, Italy, 27 June - 1 July 2011   
(SC10) Introduction to Thermal- Hydraulics

CHF Scaling for LWR

� to simplify CHF testing facilities
� the system pressure can be reduced by a factor of 6,    
heating power can be reduced by a factor of 10
�AHMAD derive 4 modeling criteria based on 13 
dimensionless group
� some parameters can not be applied to SC condition
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� HT relies on experimental work & empirical correlat ions 

� Large expenditure using SC water

� Model fluid technique desirable, well applied in nu clear 
engineering

� Simple scaling law

Scaling of heat transfer

Why fluid-to-fluid scaling law?
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What is scaling law?

Scaling of heat transfer

� Object considered
circular tubes, vertical oriented
uniformly heated

� Parameter to be separately controlled are:
tube diameter
heated length (neglected for developed flow)
pressure
fluid temperature
mass flux
heat flux

� Parameter to be studied
heat transfer coefficient, or wall temperature

P, T, G

q
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How to derive scaling factors?

� Dimension analysis (Buckingham theory) 

� Non-dimension of conservation equations & boundary 
conditions

� Empirical 

� ... 

Scaling of heat transfer

� Not sufficient number of parameters to be tuned

� Identification and selection of mot important param eters

� Combination of parameters (distortion approach)  

Challenges
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What is scaling law?

Required 
parameters in 
prototypical 
fluid (water):

DP, pP, TP, GP, 
qP

Experimental 
parameters in 
model fluid, 
e.g. CO2:

DM, pM, TM, 
GM, qM
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Validation 

Original test data in
fluid 1

Comparison of ‚test‘ with computation in
fluid 2

Scaled ‚test data‘ in
fluid 2

Scaling law

Calculated HT coefficient in 
fluid 2

correlation

Test data
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Introduction to SWAMUP at SJTU

Main loop of SWAMUP

Main parameters:

�Pressure
30MPa

�Temperature
550oC

� Flow rate 
5.0 t/h  

� Pump head 
0.8 MPa 

� Total power  
1.2 MW  DC

R
o
d

B
u
n
d
le
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Results of SWAMUP at SJTU
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Introduction to SMOTH at SJTU

Main loop of SMOTH

Fluid:  Freon 134a
Pressure: 6.0 MPa
Temperature: 200°C
Flow rate: 10 t/h
Heat power: 300 kW
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Flow instability

� loop oscillations during natural circulation

� static instability

� density wave oscillations

� Flow regime transition oscillations

� multi-channel instability

� neutronic/thermal-hydraulic instability

* LaSalle 2 on March 9, 1988-power oscillation of 25-60 percent
* WPPS WNP 2 on August 15, 1992-power oscillation of 23-43 
percent
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Analysis method

Linear stability analysis in the frequency 
domain
�single-channel TH models coupled with point-kinetics models

�using the decay ratio (searching the dominant root of the 
system characteristic equation directly in the complex plane)

Time domain analysis
directly calculates the time domain response to a flow 
perturbation and the decay ratio is calculated based on the 
transient behavior predicted
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Flow instability

Strong density change Flow instability
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Results 
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Challenges deriving from the geometry
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Challenge derive from tight lattice

�Non-uniformity of circumferential heat transfer coefficient 
�Transversal velocity through the gap of tight lattice
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Heat transfer non -uniformity
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Flow pulsation phenomenon in tight lattice

�turbulent flow in a rod bundle different from that in a pipe. 
�high mixing in the gap region was observed
�it was explained by the secondary flow
�flow pulsation phenomenon is responsible for this high 
mixing
� this effect is very strong in the tight lattice
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Objectives

Objectives of this presentation are to:

• Compare with existing LWR

• TH challenges deriving from SCWR

• Code development (Sub channel, system)

32
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CFD application -Circular tubes
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Various turbulence models with the test data of Yamagata: (D=7.5 
mm, P=24.5 MPa, G=1260 kg/m²s
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� Moderator channel model, counter-current flow;
� Property of SC fluid;
� Special heat transfer and pressure drop model;

Length,  mm 4600

Rod diameter, mm 8.0

P/d, - 1.20

Cladding thickness, mm 0.50

Gas gap, mm 0.05

Moderator box clearance, mm 1.6

Moderator box thickness, mm 2.0

Fuel assembly thickness, mm 2.0

clearance, mm 1.6

Average linear heat,  kW/m 16.0

Inlet temperature, °°°°C 280.0

Outlet temperature, °°°°C 510.0

Outlet pressure, MPa 25.0

Moderator fraction ,  % 50

Material property _

Sub-channel code
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Sub-channel code benchmark(1/2): overview

IV

� Aim: To verify the existing sub-channel codes;
� Participant: SJTU, Tsinghua U, CIAE, SNERDI;
� Moderator channel mode, inlet flow distribution;
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System code application
� Widely used in the current LWR safety analysis: Rel ap-5;
� LOCA analysis by the relap-5 code;
� Two-fluid model, void fraction discontinuity at the  critical point;
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hfg is a constant defined by the pressure 
where the pseudo two phase begin to make 
sure the continuity of the real two phase 
regime 
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System code development: ATHLET -SC 

� Based on the safety code ATHLET;
� To calculate the depression transient  across the c ritical point;

Inlet

Outlet

Flow pathHeat structure
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Safety analysis code
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� Based on the advanced LWR
� Passive design
� Simply system

LOCA of HL
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Coupling methods
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� Data transfer scheme
� Time step control
� Numerical stability
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Conclusion 

• heat transfer review

• scaling analysis

• stability analysis

•experimental study

• challenges deriving from the geometry

• code application (CFD, Sub channel, 
System, Coupling)
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…Thank you for your attention!

email: xiaojingliu@sjtu.edu.cn
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