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• Nucleus consists of: 

- protons (positive charge) 

- neutrons (no charge) 

• Surrounded by cloud of electrons 

- negative charge 

- me<<mp,mn 

• # of protons (Z) define the 
element 

• # of protons + # of neutrons (N) 
define the isotope (A) 

• Notation: ~X~ chemical symbol 

2 

m 

International Atomic Energy Agency {.,) 



efrici 

• The observed mass of a nucleus is smaller than the sum 
of its parts: 

L1 = [zmP +(A- Z)mn] _Amz 
• The mass deficit(~) has an equivalent energy (from E =mc2) 

called the binding energy ( 8 == 11 c2) 

• Nuclear reactions that result in a net release of energy (B) 
include: 

- fusion of two small nuclei 

- fission of a large nucleus 
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• • ce I I 

• It is possible for a heavy nucleus to fission on its own, 
but it is very rare (low probability of occurrence) 

• Many elements fission readily when the nucleus 
absorbs an additional neutron 

• Classify these materials as: 

- fissile: fissions readily with a low energy neutron e.g.: 
233l/ 235ll 239JJL/ 
92 92 94 

- fissionable: fissions with a high energy neutron e.g.: 
238l/ 
92 

- fertile: absorbs a neutron to become a fissile material e.g.: 
232Th~233ll 23sl/~239fJll 

90 92 92 94 
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ele n 

• A neutron may undergo several different reactions with a 
nucleus, including: 

- Scattering (elastic or inelastic): there is a transfer of energy 
between the neutron and the nucleus 

- Absorption: the neutron is absorbed into the nucleus and lost 

- Fission: the neutron causes the nucleus to fission, releasing 
additional neutrons and fission products 

• The likelihood of an interaction occurring is represented 
with a microscopic cross section (a) [1 barn (b)== l0-28 m2] 

- Dependent on the isotope of the interacting material (and its 
temperature) 

- Dependent on the incident neutron energy 
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ergy 
• Neutron energies cover -10 orders of magnitude: 

- Fission spectrum 

- Delayed spectrum 

- Moderation 

• Interaction cross sections may change by 5+ orders of 
magnitude over this range of energy. 

• Need to solve neutron evolution over these ranges. 

• OPTIONS -7 

- Full transport (absorption, moderation, fission) at each "point" in the 
reactor (i.e., continuous energy solution). 

- Transport over "Groupwise" energies (i.e., "multi-group cross 
sections). 

- Diffusion over "Few" groups (i.e., 2-group diffusion solvers such as 
SCALE) 

- What is the relative calculation times for these approaches? 
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• the energies range up to 
several MeV, with a 
maximum around 0.7 MeV. 

• The fission-neutron spectrum 
has the form 

x( E)== 0.453e-1.036
£ sinh .J2.29 E (1) 

where E is in MeV 

(Note: this is a distribution in 
number of neutrons, not flux) 
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Energy Distribution of Fission Neutrons 
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Note - Illustration copyright: 
Copyright 1985 by American 
Nuclear Society, La Grange 
Park, Illinois 
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• e erg1e 

• Neutronic energy distribution can be classified as: 
- the fission spectrum at energies above about 50-100 

keV 

- the slowing-down spectrum to about 1 eV 

- the Maxwellian spectrum at thermal energies, below 
about 1 eV 
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KEVCQ 

• Most neutrons born from fission are in the fast range (high 
energy) 

• To sustain a fission chain reaction, the fast neutrons must 
be brought down to a lower energy (where a fission is higher) 
via interaction with a moderator 

• Thermal reactor 

• Neutrons transfer their "excess" energy to the moderator 
through series of scattering interactions I collisions 

• Good moderators have: 

- Low absorption cross sections cr absorption 

- Low atomic masses (to maximize ~E in a single interaction) 
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• The reactor is critical when the number of neutrons 
produced in each generation is equal to the number lost 

• The multiplication factor is defined as: 

k= rateot neutron production 
rate of neutron loss 

- k < 1 : the reactor is subcritical 

- k = 1 : the reactor is critical 

- k> 1 : the reactor is supercritical 
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an elaye e 

• Neutrons that are released immediately after the fission 
occurs are referred to as prompt neutrons 

• Most fission products are unstable nuclei that undergo 
radioactive decay 

• Following radioactive decay, some daughter nuclei may 
have sufficient energy to release additional neutrons called 
delayed neutrons 

- Time constants for release of delayed neutrons are dominated by 
the half life of the unstable fission product 

• Delayed neutrons must be included in analysis 
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ce e 

• Direct fission neutrons have a "lifetime" 

• 

- Neutrons born in fission interact with 

• moderator (scatter/absorption) 

• core materials (absorption). 

• Fast fission materials 

- Their "lifetime" is very short. 

- Control of such a system is very difficult (mechanical and I&C systems cannot 
respond on this timeframe). 

Delayed neutrons have time scales much longer (order of seconds) . 

- A thermal reactor is designed such that the reactor is slightly "subcritical" based 
on direct fission neutrons alone. 

- The delayed neutrons provide the remaining neutrons to make the core critical. 

• Therefore control of the reactor can be achieved through changes in the 
delayed neutron absorption. 

18 International Atomic Energy Agency {~) 



• Define reactivity as the relative distance from criticality: 
1 

p==l--
k 

- p < 0 : the reactor is subcritical 

- p = 0 : the reactor is critical 

- p > 0 : the reactor is supercritical 

• Units of reactivity [1 mk == 0.001, or 1 pcm == 0.01 mk] are 
typically viewed as being added or removed from the 
reactor 
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IC 

The goal of reactor physics calculations is to track 
neutrons as they evolve in space, energy and time. 

This allows ~redictions of ~ower, radiation levels, decay heat. ... etc .. 

• Fundamental assumptions of most reactor physics 
analysis: 

- The average behaviour of neutrons is descriptive 

- Neutrons do not interact with one another 
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ac rr 

• To study the fission process, many physical features can be 
understood by examining the 4-factor formula: 

kif) = cpflJ 
• Which can be derived form the diffusion equation. 

vl: 11<1> 1 + vl: 12<1> 2 total fission rate 
B = -

vl: . ,<!> thermal .fission rate 
f - - -

L a2<D2 2.:sl-t2<1>2 p = -------
L al <Dl + 2.:sl~2<1>1 l.: al<Dl + Ls1~2Q>l 

rate of ,s:lovving dovvn 
-----~--~-----

rate of slowing down + absorptions 

f = 2: !;1<D 2 = rate of thermal absorption in fuel 

2: n '1 <D _, total rate of thermal absorption s 

_ rate of neutron production through thermal fission 

rate of thermal absorption 
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• Fundamental quantity is the 
angular neutron flux density 
. 1n ~ CD( r, E, n, f) 

Space (position r) 

Energy (E) 

Direction (solid angle Q) 

Time (t) 

• Also expressible in terms of 
the neutron density 

CD( r, E, n, f) == v n( r, E, n, f) 
neutro:::locity V= [IT 

~m: 
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Image Source: Daniel Rozon, "Chapter 2: The Diffusion 
Equation and the Steady State" in Introduction to Nuclear 
Reactor Kinetics, Ecole Polytechnique de Montreal, 1998_ 

International Atomic Energy Agency {.,) 



• acr IC r 

• Define the macroscopic cross section as: 

L(r,E,t) = N(r,t)CY(EJ [cm-1] 

density of nuclei 
in a volume 

microscopic 
cross section 

n 

• L represents the probability of a reaction taking place 

• The reaction rate for any given reaction is simply: 

R==LcD 
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e 

• Posit that the rate of change of the neutron density in a 
volume is the sum of all neutron sources and sinks/losses 

Neutrons changing energy 
via scattering/collision 

Neutrons born 
in fission 

0 

<D ~ ==Vn ~ 
(~£,0,0 (~£,0,0 
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Neutrons lost 
from leakage 

0 

Neutrons lost 
from absorption 
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00 
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00 

+ V' f v L <l> ~ dE' A-/( f) Pc f') f(r,E',t) (r, E,D.,f) 

delayed neutron 
source 

0 

+ s(r,E,f) 

I 
other sources 

n 
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e n 

• The neutron transport equation can be solved with 
appropriate selection of initial and boundary conditions 

- Some initial neutron flux distribution 

- Vacuum, reflective, white or periodic boundaries 

• Typical approaches to solution are: 

- Deterministic: discretization in space and energy with direct 
numerical solution (e.g. WIMSD, DRAGON) 

- Stochastic: solution via Monte Carlo methods (e.g. MCNP, KENO, 
SERPENT) 

• Often looking for steady state flux distributions 

- isotope depletion (burn up) evolved separately in time 

- Used an initial condition for kinetics calculations. {£J..) 
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a ell 

• 

• 

Neutron transport solutions are 
computationally intensive 

Solution normally constrained to 
two dimensional models of single 
fuel assemblies or lattice cells 

• Can also create three 
dimensional models of several 
lattice cells (called supercells) 

Useful for finding reactivity worth of 
control devices in the reactor 

27 

PWR MOX fuel assembly 
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0 00 00 000 000 00 00 00 
0 00 0 ~ QO Q 00 00 0 00 
0 00 00 00 00 0 00 00 
0 00 00 00 0 000 00 00 00 
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Image Source: SERPENT 1.1.7, VTT Technical 
Research Centre of Finland, 2010. 

Typical CANDU Supercell 

' . 

Image Source: Ben Rouben, "CANDU Fuel 
Management" in EP6003: Course Notes, 
McMaster University, 2009. (s.O...) 
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• 
I r 

• The quantity necessary to calculate the actual reactor 
power is the scalar neutron flux density 

4;r 

¢( r, E, !) = f <I>( r, E, 0, t)tfQ = vr( r, E, !) 
0 

• To solve the new equation we approximate the leakage 
term as a diffusion process 

4;r 

f (- Q · V<I>( r, E, 0,!) }fn---+ +V. D( r, E)V ¢( r, E,!) 
0 
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scalar neutron 
flux density 
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• 
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n 
• By assuming that leakage out of the unit cell is describable 

by diffusion, we've assumed a high level of isotropy in the 
neutron flux 

• This assumption breaks down: 

- At material boundaries and the external boundary of the domain 

- Near localized sources 

- In highly absorbing materials 

• The high fidelity of a neutron transport solution is lost 

- Must use unit cells much larger than the mean free path of a 
neutron with homogenized properties within the cell. 

- Homogenization -+ "representative" properties for a "large cell" that 
give similar results as a more detailed calculation. .At 
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e ifrl 
• Codes that solve the diffusion 

equation allow three dimensional 
simulation of entire reactor cores 

e.g. PARCS, DONJON 

Suitable for accident analysis and 
refuelling calculations 

• 
I 

• Typically neutron energy is collapsed 
into few characteristic groups 

- e.g. fast/thermal or more 

• Neutron transport codes are used to 
supply the collapsed few group 
homogenized cross sections in unit 
cells suitable for the diffusion 
solution 

31 
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3D Neutron Flux Map for CANDU 
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Image Source: D. Sekki et al, A User Guide for 
DONJON Version 4, Ecole Polytechnique de 
Montreal, 2011. 
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• Kinetics calculations are used to: 

- Assess the neutron (power) behaviour in space and time over 
relatively shorter time scales 

- Linkage to thermalhydraulics changes 

- Safety and stability analyses. 

- Point vs. 3-D reactor kinetics. 

• Depletion calculations: 

- Determine the slower evolution of physics -7 determine the change 
in composition of the fuel with burn-up. 

32 International Atomic Energy Agency {~) 



• In "point kinetics", only the behaviour of the reactor as a 
whole (i.e. a "point") is considered 

• Furthermore, only "short time" phenomena are relevant 

- Neither the core composition or flux "shape" are expected to 
change quickly relative to the total power or "amplitude" 

- The flux and macroscopic cross-sections over the entire 
reactor are thus homogenized or averaged as: 

¢( r, E, f) => ¢(f) == n( f) v 

"L(r, E, f)=> "L (constant 
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• Again, express the rate of change of the neutron density 
as the sum of all neutron sources and sinks/losses 

Neutrons born 
in fission 

" 
v'L,¢ 0 0 

" 
1 d¢ ( Q)¢ --== VL -L -DB 
V df 1 

a 

34 

0 

Neutrons lost 
from leakage (diffusion: 

Dlf¢ 

Neutrons lost " 
from absorptionL a¢ 
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• The delayed neutron precursors are homogenized into a 
finite number of "groups" with characteristic yields and 
decay constants: 

" 

1 d¢ ( \1 -=-== vp'L,-'La-D9JP+LA-kCk 
v dt k 

• The concentration flf:keach group ev~lves over time as: 
- == -A-kCk + vdk'L ,¢ 

dt 
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• For the thermal fission of 235U typically use k== 6 

0.0380 0.0133 

0.1918 0.0325 vd=0.0166 

0.1638 0.1219 

0.3431 0.3169 

0.1744 0.9886 fJ = 0.00682 

0.0890 2.9544 
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• Effective multiplication factor 

k _ neutrons created _ vL, 
ett- neutrons lost -La+ Dlf 

• Reactivity (or "distance from criticality") 

kef! -l VL 1 -La - D If 
p== ------

kef! VL 1 

• Prompt neutron generation time 

A== 1 
VvL 1 

• Delayed neutron fraction 
K 

V==Vp+Vd 

f3 == LPk 
k=I 

vdkL t 
f3k ==--

VL t ·Al_ 
International Atomic Energy Agency (y) 37 



e n 

• With some rearrangement, we get the classical form of 
the point kinetics equations: 

d(/J = (p - f3) ;;, + "A, c . 
dt A 'f/ ~ k k' 

dCk ==-A- C + f3k :A 
dt k k A 'f/ 
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• 1ng 

• The point kinetics equations are relatively easily solved as 
a system of k+ 1 equations 

• Point kinetics is typically used to easily determine the 
relative change in reactor power from insertions of reactivity 

• Many heat transport system thermal-hydraulic codes (e.g. 
RELAP5, TRACE) contain point kinetics solvers 
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• Often in Safety Analysis, the flux distribution can evolve 
very quickly (e.g. rod ejection event), and hence the 
neutronic behaviour may show "local" effects. 

• In such cases treating the core as a "point" in point kinetics 
may not be sufficiently accurate. 

• Need for 30 kinetics calculations 

- Solve the diffusion equations in space and time. 

• See Lecture of TH-RP coupling 
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e • n1c w 
• A majority of work on SCWR is centered around a THERMAL DESIGN. 

• Important features: 
- Fuel 

- Moderator Structures 

• The SCWR coolant can be classified as either 
- Gas like 

- Liquid like 

- The differences greatly affect the absorption/moderation characteristics. 

• Main difference in physics issues 
- Doppler broadening of resonances 

- Coolant-density effects 

- "Harder" Neutronic spectrum as compared to typical thermal reactors. 

- Moderation 
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• In many designs (e.g., HPLWR), the coolant enters the core 
in its "liquid" like state. 

- Part of this "liquid like" coolant is first directed through "water 
boxes". 

- The water boxes provide moderation to the surrounding assemblies 

• After passing through the water boxes, the coolant then 
travels through the fuel assemblies to remove heat. 
- As its enthalpy rises in the fuel region -7 transitions to the "gas like" 

state. 

- Rapid change in moderation/absorption cross section due to the 
rapid change in the density. 

- Density feedback effects -7 Need for coupled neutronics­
thermalhydraulics. 
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assembly box fuel p1ins w1re wrap 

J . Starflinger, FZK, Presentation at McMaster University, June 9, 2009 
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from 
feedwater 

tank 

Koehly, 2009 
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Control rod 

Water box wall 

Fuel rods with 
wire wraps 

Herbel!l, EnBW, Himmel, FZK, 2007 
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Honeycomb 
structures 

Assembly box 
wall with holes 
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• The heavy water type thermal 
reactors utilize separate moderator 
-coolant systems (e.g., CANDU­
SCWR) 

- Allows for moderator to be in a 
subcritical fluid regime. 

- No mixing of coolant and moderator 

- Control and safety devices are not 
inserted into the high pressure region~ 
of the core. 

- Cold moderator (60C) 

• Pressure tube isolates the 
coolant/fuel region from the 
moderator tank. 46 
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• Insulate pr~essure tub~e 

on the ins1ide. 

• Remove calandria tub·e. 

• Insulator thickn.ess 
optimiz~ed to obtain 
- Usual heat oss by 

conduction/convec .ion to 
the .moderator under 
normal operat·on. 

- Sufficient heat reje·c.t1ion by 
radia ion/conduction/ 
con·vection under accident 
conditions. 

47 

e 

\IOOii..l'tU OR. 

IN5ilh ;\TOll: Pl~RJ<'O \. niD r.1 iii'. It 

International Atomic Energy Agency (~) 



e • e liS) 

~------ Cell Botundary 

..-----1------ Moderator 

Pressure Tube 

Insulator 

Coolant 
21 fuell element ring 
14 fuell element ring 

7 fuell ellement ring 
Dysprosium centra l ning 

~====================================48~====~----------------------~•ncy(.~~ 



ce el el: 
•Eliminate the calandria tube 

•Insulate the inside of the pressure tube 

/ 
Calandria 
Tube 

Fuel 
Bundle 

-coolant 
temperature 

Heat deposited in moderator -5% (neutron/gamma 
heating); -0.1% through gas gap 

-moderator 
temperature 

Porous Insulator 

Heavy Water 
Moderator 

Heat deposited in moderator -5% (neutron/gamma 
heating + 1% through insulator 
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nc g em ark 

• SCWR neutronics has no "new" or unique physics to be 
modelled. 

• Rather the geometry, temperatures, properties are different. 

• While many physics code can perform calculations under 
these conditions -7 the accuracy and validity of the results 
has not been rigorously demonstrated. 

- Higher fuel and moderator temperatures 

- Harder neutronic spectrums 

• In addition to more calculations, there is a need for 
validation. 
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