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Objectives

Objectives of this Lecture are:
• To review the basic mechanisms of flow instability

• To shortly describe techniques and tools adopted to 
predict unstable behaviour

• To present a comparison of unstable behaviour in 
two-phase and SC fluid systems 
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Introduction

• Assuring a stable flow behaviour of industrial equipment is one
of the important design objectives

– instability may perturb operation, challenging control systems
– the inadvertent occurrence of oscillations may endanger

sensitive equipment
• fatigue
• exceeding thermal margins

• Nevertheless, instabilities are often encountered in fluid systems
because of

– presence of delays between causes and effects due to transport
of perturbations (advection)

– non monotonic trends in pressure drop vs. flow characterist ics
– nonlinear behaviour of governing equations (advection terms)
– intrinsically unstable flow regimes in multiphase flow
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• Classical control theory concepts constitute a useful basi s for
understanding and modelling linear stability in fluid syst ems

– approach applicable to study the effect of small perturbations , i.e.
for linear behaviour

– zeroes and poles of transfer functions define stability conditions
– practical stability criteria available (Nyquist, Routh-Hurwitz)

• When nonlinear behaviour is addressed, often transition to
chaos by different routes is observed

– generally, periodic behaviour is first observed (limit cycles)
– chaos is a deterministic but unpredictable aperiodic behav iour

arising due to sensitivity to initial conditions (SIC ) by different
routes

Introduction
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• In nuclear reactors unstable behaviour may be favoured or af fected
in its nature by the presence of neutronic feedback

– power production is affected by flow oscillations
– fluid density variations in moderated systems affect the closed loop

gains (e.g., higher gain --> lower stability)
– spatial harmonic modes in nuclear reactor core are affected by the

thermal-hydraulic feedback

• Flow oscillations in nuclear reactors are unwanted because they
perturb the power production and the heat transfer capabili ties

• Unstable behaviour must be therefore prevented or mitigate d in
NPPs by different means:

– designing for stable normal operation
– avoiding known unstable operating conditions
– suppressing instabilities by corrective actions
– shutting down the reactor , whenever needed

Introduction
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Basic mechanisms of flow instability
Single-Phase Natural Circulation

• Even in single-phase natural circulation flow oscillation s
may take place as a consequence of delays due to fluid
transit along the loop

• Typical configurations of the more frequently studied
loops are reported hereafter
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• Unstable behaviour was predicted by Welander in (1967)
and then observed in many experimental loops

• An intuitive explanation for this behaviour was also
provided in Welander’s paper:
– pockets of fluid with perturbed temperature emerging from

the source and the sink result in a perturbation of the flow
rate

– this , in turn, affects the residence time of the pockets in the
source and the sink at the subsequent passages;

– thus, for different combinations of physical parameters,
temperature perturbations may be damped or amplified .

Basic mechanisms of flow instability
Welander’s mechanism
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Basic mechanisms of flow instability
Flow rate oscillations
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Typical observed or predicted behaviour:
the flow oscillates with repeated flow reversals

This mechanism may be possibly active also 
in supercritical fluid systems 
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Boiling channel instabilities have a great concern for our discussion, since
unstable phenomena occurring in them are closer to those env isaged in
heated channels with supercritical fluids

Both static and dynamic instabilities are considered:
– Static: Ledinegg type , flow regime relaxation, geysering
– Dynamic: density-wave , pressure drop, flow regime, acoustic

The pressure drop oscillations occur when a system that woul d be prone to
the static Ledinegg instabilities is coupled with compress ible devices
allowing for dynamic oscillations of the system

We will shortly review only the Ledinegg type and the density wave
oscillations

Basic mechanisms of flow instability
Boiling channels

International Atomic Energy Agency

Joint ICTP-IAEA Course on Science and Technology of SCWRs, 
Trieste, Italy, 27 June - 1 July 2011   
(SC15) Flow stability of  heated channels with supercritical pressure fluids



For a single channel , the Ledinegg instability can be expected when the
internal pressure drop to flow characteristics has a non mon otonous trend

The reference situation is depicted below

Basic mechanisms of flow instability
Static Ledinegg type instability
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UUppppeerr PPlleennuumm
wwii tthh iimmppoosseedd

pprr eessssuurr ee

LL oowweerr PPlleennuumm
wwii tthh iimmppoosseedd

pprr eessssuurr ee

UUUnnniii fff ooorrr mmm
HHH eeeaaattt iii nnnggg

Outlet
orificing

Inlet
orificing

Distributed
friction

p∆

W

All Vapour

All Liquid

Real
Characteristics
with Negative 
Slope Region

Monotonous 
Real

Characteristics

p∆

UUppppeerr PPlleennuumm
wwii tthh iimmppoosseedd

pprr eessssuurr ee

LL oowweerr PPlleennuumm
wwii tthh iimmppoosseedd

pprr eessssuurr ee

UUUnnniii fff ooorrr mmm
HHH eeeaaattt iii nnnggg

Outlet
orificing

Inlet
orificing

Distributed
friction

W

All Vapour

All Liquid

Pressure Drop
Characteristics
with Negative 
Slope Region

Monotonous 
Presure Drop

Characteristic s

p∆

Joint ICTP-IAEA Course on Science and Technology of SCWRs, 
Trieste, Italy, 27 June - 1 July 2011   
(SC15) Flow stability of  heated channels with supercritical pressure fluids



Depending on the slope of the static external and internal pressure drop-to-
flow characteristics, the system can be found stable or unstable in an
excursive way
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Basic mechanisms of flow instability
Static Ledinegg-type instability (cont’d)

International Atomic Energy Agency



Different boundary conditions may result in different stab ility
characteristics :

– an imposed flow condition (e.g., positive displacement pump) always stabilizes
the system

– an imposed external pressure drop condition (single channel in a bunch of
many) may make the system unstable

 p∆
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In the latter case, the system drifts from the unstable P 0 point to either P1 or
P2, which are stable

Basic mechanisms of flow instability
Static Ledinegg type instability (cont’d)
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Unlike Ledinegg instability, density-wave oscillations represent a dynamic
phenomenon , i.e., their occurrence depends on the dynamic characteristics of
the systems

Simplified Rational Explanation:
If sinusoidal flow perturbations
having different frequency are
applied to the system, for a given
frequency the perturbation in
pressure drop may be out-of-
phase with the flow perturbation
���� THE PERTURBATION

IS AMPLIFIED

 

t

inWδ

( )totpδ ∆

In fact, at that frequency the system reacts as it had a negative hydraulic
impedance

IF A SYSTEM IS UNSTABLE AT SOME SELECTED  FREQUENCY  
IT MUST BE CONSIDERED UNSTABLE

Basic mechanisms of flow instability
Density-wave oscillations
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Though the static pressure drop vs. flow rate characteristics does not help to
decide if a system is stable or not under certain conditions , it identifies the
region where instability may occur ; i.e., for a a constant pressure drop:
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Basic mechanisms of flow instability
Density-wave oscillations
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• If properly linearised, the governing equations for two-ph ase flow
may be used to provide stability maps in the Ishii-Zuber plan e, i.e.
the plane of the phase change number and the subcooling
number, for selected values of the other dimensionless
parameters ( ΛΛΛΛ, Fr, K in, Kout , etc.)
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In this figure, ZR is a
dimensionless amplification
factor positive for unstable
and negative for stable
conditions

Basic mechanisms of flow instability
Stable and unstable behaviour in boiling channels
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Dimensionless power-to-flow 
ratio

Dimensionless degree of 
subcooling
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Basic mechanisms of flow instability
Stable and unstable behaviour in boiling channels

See the definition of the operating points in the p revious page
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Basic mechanisms of flow instability
Parametric effects for boiling instabilities
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Harmonic modes of neutron distribution in BWR cores

may change their level of subcriticality due to thermal-hydraulic feedback ,
resulting in CORE WIDE or OUT-OF-PHASE (regional) power oscillations,
triggered by density waves, at relatively high power-to-fl ow ratios
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Basic mechanisms of flow instability
Coupled neutronic and thermal-hydraulic effects
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Basic mechanisms of flow instability
Coupled neutronic and thermal-hydraulic effects
A functional sketch of the interaction between thermal-hyd raulic and neutronic
effects in reactor cores is reported hereafter.
This is also a sketch of the aspects requiring a proper modell ing
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Basic mechanisms of flow instability
SCWR phenomena

• Stability is addressed as an issue of great importance for SCWR design

• Heated channels with supercritical pressure fluids are ass umed to be
susceptible to similar instability phenomena as observed i n boiling channels

• The transition across the pseudocritical temperature can b e considered as a
sort of “pseudo-boiling” phenomenon, giving rise to denser fluid at channel
inlet and lighter one at the outlet

• This is one of the reasons why the basic understanding and the numerical
tools developed for two-phase flow instabilities are found immediately
available for being converted into understanding and numer ical tools to be
applied to supercritical pressure instabilities

• The scarcity of relevant experimental data on instabilitie s in supercritical
pressure systems is presently a problem to be coped with in order to
ascertain that this process of knowledge transfer from one r esearch field to
another is made without forgetting any important differenc e
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While two-phase flow models must be used for the thermal-hyd raulic analyses of
BWR stability, single-phase flow governing equations with allowance for s trong
property changes are sufficient for SCWRs

This remarkable simplification should not mislead:
– the heavy (liquid-like) and light (gas-like) fluid may be un evenly distributed in the

channel cross section giving rise to buoyancy phenomena aff ecting transfers in a
complex way

– specific constitutive laws are required (and still under de velopment) to represent
supercritical fluid phenomena

So, a complex behaviour is anyway expected even if the govern ing equations are
simpler with respect to the two-phase flow case

Tools for predicting unstable behaviour
Governing equations
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“Codes” is the name adopted for complex computer programs adopted in
nuclear reactor analysis

– Time domain codes
They are based on some kind of numerical discretisation and integration in time
They are suitable for predicting the transient behaviour in a free or forced evolution
of a system, even beyond the stability limit
They are affected at different extent by truncation error effects

– Frequency domain codes
They are so called because they are based on linearised equations that are
converted to transfer functions by Laplace transform
They are therefore suitable to predict the stability threshold
The classical control theory principles are therefore used to study stability
The algebra they are based on is sometimes very cumbersome

Codes of both categories can be very complex addressing many real plant
details (see the previous sketch of coupled effects)

Tools for predicting unstable behaviour
General classification
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Classical two-phase flow system codes can be adopted for sup ercritical fluid
analyses provided their property packages allow for the cal culation at
supercritical pressure; only the single-phase version of g overning equations is
obviously necessary

As mentioned, they should be upgraded for application at sup ercritical pressures
by appropriate constitutive laws for heat transfer and fricti on

At the moment, classical transient codes for the safety anal ysis of LWRs
(RELAP5, TRACE, etc.) are applied to supercritical pressur es with no major
numerical problem, unless the critical pressure is crossed or the operating
pressure is too close to the critical one

In addition to heat transfer and friction, critical flow from supercritical pressure
conditions is another field needing development

Tools for predicting unstable behaviour
Models and codes
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• As mentioned heated channels with boiling and supercritica l fluids
share a common basic feature

THE FLUID ENTERS THE CHANNEL AT HIGH DENSITY 
AND GETS OUT OF IT AT LOW DENSITY BECAUSE OF HEATIN G

• The related instability phenomena can be considered quite s imilar
because of this basic similarity

• Dimensionless numbers to study stability were proposed by v arious
Authors in similarity with the classical phase change and su bcooling
numbers adopted for boiling channels

Two-phase vs. SC flow stability phenomena
Basic reasons for similarity
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1 - “Heavy fluid” region

2 - “Heavy and light fluid mixture” region

Two-phase vs. SC flow stability phenomena
Dimensionless numbers for SC flow stability

Zhao et al. (2005)



Two-phase vs. SC flow stability phenomena
Dimensionless numbers for SC flow stability

Zhao et al. (2005)

• Feedback loop of the transfer
functions for the pressure drops in
the three regions

International Atomic Energy Agency

•Typical stability map

3 - “Light fluid” region
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Two-phase vs. SC flow stability phenomena
Dimensionless numbers for SC flow stability

Ortega Gómez et al. (2006)
• These authors propose two dimensionless numbers similar to the ones

adopted for boiling channels
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Two-phase vs. SC flow stability phenomena
Dimensionless numbers for SC flow stability

Ortega Gómez et al. (2006)
• The balance equations are discretised by FEMLAB

• Typical stability map
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Two-phase vs. SC flow stability phenomena
Dimensionless numbers for SC flow stability

Yeylaghi et al. (2011)
• The Authors use a very compact and simple dimensionless form alism

derived from balance equations applied in the prediction of static
instabilities

(e = exit, i = inlet)

International Atomic Energy Agency

• Typical results show a very
successful prediction of
stability boundaries, for
different fluids and also for
different channel orientations

• The outlet temperature at the
onset of excursive insta-
bilities is also found close to
the pseudocritical value

Joint ICTP-IAEA Course on Science and Technology of SCWRs, 
Trieste, Italy, 27 June - 1 July 2011   
(SC15) Flow stability of  heated channels with supercritical pressure fluids



• In analogy with the case of the boiling channel, the followin g
dimensionless parameters were introduced (Ambrosini and S harabi,
ICONE14, 2006):

• These definitions do not need introducing any fictitious ps eudo-
saturated state and make reference to the single thermodynamic state
that really matters in supercritical fluids: the pseudocri tical point

International Atomic Energy Agency

Two-phase vs. SC flow stability phenomena
Dimensionless numbers for SC flow stability

Ambrosini and Sharabi (2006)
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The 1D dimensionless balance equations therefore become

with the inlet boundary condition
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Two-phase vs. SC flow stability phenomena
Dimensionless numbers for SC flow stability

Ambrosini and Sharabi (2006)

SPC
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One of the useful features of the definition of dim ensionless density is
its capability to collapse all the trends as a func tion of dimensionless 
enthalpy nearly into a single line no matter the pr essure
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Two-phase vs. SC flow stability phenomena
Dimensionless numbers for SC flow stability

Ambrosini and Sharabi (2006)
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The trans-pseudocritical number is defined as

having the meaning of a power-to-flow dimensionless ratio; in fact, it is:

Therefore, in similarity with boiling channels for N PCH and NSUB, in the N TPC -

NSPC plane the lines for which NSPC = NTPC + const. represent the loci at

constant exit dimensionless enthalpy
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Two-phase vs. SC flow stability phenomena
Dimensionless numbers for SC flow stability

Ambrosini and Sharabi (2006)
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Comparison between
transient code behaviour
with stability maps
produced for an IAEA
Code Comparison
Benchmark
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Two-phase vs. SC flow stability phenomena
Dimensionless numbers for SC flow stability

Ambrosini and Sharabi (2006)

RELAP5 is used in
comparison with
in house codes

In-house transient code and for  vertical and horiz ontal channel



Boiling Channels Heated Channels with Supercritical Fluids

Bearing in mind the boiling channel paradigma,
heated channels with supercritical fluids are also predicted to show both density-

wave oscillations and Ledinegg excursive instabilit ies
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Two-phase vs. SC flow stability phenomena
Comparison of Stability Maps
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Boiling Channel Heated Channels with Supercritical Water
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Two-phase vs. SC flow stability phenomena
Comparison of Transient Behaviour

System codes

Density waves 
appear as a 
sort of flow 

wave 
phenomenon 
in both cases
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Two-phase vs. SC flow stability phenomena
Comparison of Transient Behaviour

System codes
To study stability with a system code, time histories of NTPC vs. time are
obtained while power is slowly increased and an automatic or visual criterion is
used to identify the threshold for unstable behaviour
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Both models show swings of flow rate distribution 
similar to those predicted by 1D codes:

again, the global instability mechanism appears the  same
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Two-phase vs. SC flow stability phenomena
Comparison of Transient Behaviour

CFD Codes – Circular Pipes

Also the 
FLUENT code 
was applied 

to study 
density wave 

oscillation 
instabilities
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A major difference is found in the capability of th e low-Re model 
to identify heat transfer deterioration during osci llations:

wall functions cannot catch the occurrence of this phenomenon
that resembles Boiling Transition occurring during instabilities in BWRs
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Two-phase vs. SC flow stability phenomena
Comparison of Transient Behaviour

CFD Codes – Circular Pipes
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The standard k- εεεε model of FLUENT was used with wall
functions addressing the following cases

 for the triangular pitch subchannel: 
o rod diameter: 7.6 mm; 
o pitch: 8.664 mm; 
o active height: 3 m. 

 for the square pitch subchannel:  
o rod diameter : 10.2 mm; 
o pitch: 11.2 mm; 
o active height: 4.2 m; 
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Two-phase vs. SC flow stability phenomena
Comparison of Transient Behaviour
CFD Codes – Fuel Bundle Slices
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By raising the power to appropriate levels , while keeping
constant the pressure drop across the channel, unstable
behaviour is observed in both cases
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Two-phase vs. SC flow stability phenomena
Comparison of Transient Behaviour
CFD Codes – Fuel Bundle Slices
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The same mechanism of flow oscillations is observed as in the
case of circular pipes

AGAIN, IT SEEMS THAT THE OVERALL INSTABILITY MECHAN ISM IS 
SIMILAR AS PREDICTED BY 1D MODELS
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Conclusion

Flow instabilities in supercritical pressure fluid system s are predicted
in close similarity with those observed in two-phase flow

A plenty of tools and theories developed for boiling channel
instabilities is available to be used with supercritical fl uids

Though this lecture covered only basic aspects , in comparison with
the two-phase flow case, the complexity of these tools can be
considerable, including the coupling with neutronics and t he different
relevant reactor systems as reported in some of the works whose
reading is suggested in the References

Experimental data are presently needed to confirm the predi ctions
obtained by available tools

Joint ICTP-IAEA Course on Science and Technology of SCWRs, 
Trieste, Italy, 27 June - 1 July 2011   
(SC15) Flow stability of  heated channels with supercritical pressure fluids



Thank you for your attention,

Walter Ambrosini
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