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Outline

* Evolution of analysis methods

* Importance of coupling in nuclear safety calculations
— Dependency of thermalhydraulics on power.
— Dependency of neutronics on thermal characteristics
— Density and moderator temperature feedback effects
— Doppler broadening and Doppler feedback

SCWR vs. BWR features

* Coupling methodology
— Hierarchy
— Spatial mesh, grouping and mapping
— Temporal stepping
— Variables, control and relaxation

* Examples (BWR and SCWR)
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Evolution of Safety Analysis
Methods

* Safety analysis methodologies have in general evolved

— purely deterministic and conservative approaches using coarse tools
— Move toward higher fidelity methods

* e.g., 2 and multigroup diffusion, transport solutions, resonance and spatial self
shielding, sub channel hydraulics and CFD

— “mixed” methods
* e.g., best estimate codes with conservative assumptions

— Best Estimate Plus Uncertainty (BEPU) type approaches modelling
multiphysics.

* Coupling of discipline specific codes.
* New multiphysics integrated codes

* History can be traced within each jurisdiction.

* Current practice for best estimate work usually involves coupled code
or multiphysics simulations.

— Realistic and spatially resolved feedback effects
— TH-NK coupling
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Important Feedback Mechanisms
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* Fuel burn-up (poisons, breeding, isotopic)

Joint ICTP-IAEA Course on Science
and Technology of SCWRs, Trieste,
ltaly, 27 June - 1 July 2011 NK and
TH Coupling

4

International Atomic Energy Agency {@}
£

AL



Fuel Temperature Feedback
- Need for TH Coupling

* fuel-temperature feedback; that is, the
reactivity effect of a change in fuel
temperature.

— This is a major component of the power
coefficient of reactivity, since fuel temperature
is directly linked to reactor power

* Doppler broadening “extends” the range o
a resonance, and results in increased
capture in the resonance.

— Increased capture in U-238 resonances is a -
negative reactivity effect, leading to a = : : -
negative fuel-temperature reactivity _ |
coeffiCient . froas Nlti?]i::ll’l:;;'{:glli!r. f:l:f';ft’ll:"tl:f .;r:ihjnlnth:c?"!-.‘uq.hllnl:lll]?:.I:'xulnl Tamtlteas, Jaln

Wilew & Soms, 1976]
— Pu-239 is present, the low-lying fission
resonance at 0.3 eV must also be considered.
In this case, increased capture is a positive
reactivity effect.

— The fuel-temperature coefficient then becomes
less negative as Pu content increases.

. TV
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Moderator Temperature Feedback
- Need for NK-TH Coupling

* density changes with temperature

— A decrease in moderator density decreases the effectiveness by which
neutrons are slowed down through the resonance region.

* Hence the resonance absorption increases, causing the resonance escape
probability to decrease.

* The lower moderator density, however, causes the thermal utilization to
increase, resulting in a positive temperature effect

— in liguid-moderated reactors the decreasing moderator density is the

dominant effect and causes the moderator temperature coefficient
t{o be negative.

* exceptions may occur under some conditions
* PWR beginning of cycle with heavy boron loads

* changes in the thermal neutron energy spectrum play a
secondary role

— Potentially more pronounced in SCWR
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Moderator Temperature Effects
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Macroscopic Effects
PWR Example
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Neutron Energy Spectrum

* Hardening the spectrum

— Shift in the thermal portion of the neutron spectrum to higher

energies.

° i.e., “thermal peak” median value moves to higher energy.
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Neutronic Power — Thermal Lag

* Time scale effects:

* The delayed reactivity effect from the moderator
temperature variation is a dominant link between the
neutronic and thermal-hydraulic behaviour

* There exists a time delay between changes in fission
heating in the fuel and the temperature response in the
coolant;

— heat transport from the fuel,
— across the fuel-clad gap,
— through the cladding,

— and into the coolant takes a measurable amount of time.
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Thermal Response

* Heat is created in the fuel through the fission process.
* Fission Process (fast time scale, delayed time scale)

— Fuel coolant and moderator temperatures
— Geometry
— Neutron flux, materials, interaction cross sections....

— Power production

* Heat Transfer Processes (slow time scale)
— Volumetric power production
— Radial (axial) conduction in fuel, gap and sheath.

— Convection to coolant/moderator (plus radio-heating effects).

* Coolant velocities, geometry, pressure temperature....
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High Level Objective

* Since the neutronic properties are influenced by the heat
transfer behaviour and vice versa = the “true” solution
should include the feedback effects which occur at each
spatial location and within each time step.

— Temperature = density

— Temperature = microscopic cross sections
— Thermal spectrum hardening

— Influence on local and total power.

— Complete solution involves TH-RP-Fuel (thermomechanical effects)
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LWR Drivers to Coupling

* Coupling of computer codes would improve the quality of accident analyses
for transients where either a strong or uneven feedback effect exists or
different solution domains have to be taken into account.

— Inadvertent control rod withdrawal (uneven feedback);

— Control rod ejection (strong local feedback);

— Start-up of a cold or boron free loop (uneven feedback);

— External asymmetrical boron dilution (uneven feedback);

— Transients with potential for inherent boron dilution (uneven feedback);
— Anticipated transients without scram (uneven feedback);

— Cool-down transients with re-criticality potential (steam or feed lines break (uneven
feedback);

— LOCA with strong influence from containment processes (different solution domains);

— Severe accident progression and radioactive material transport in the containment
(different solution domains).

IAEA TECDOC-1539, “Use and Development of Coupled Computer Codes for
the Analysis of Accidents at Nuclear Power Plants”
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* A total interactive coupled solution:

Flwd-dynamlcs
- Multi-phase, multi-component
/ : E&wrg;‘ ey \M ss transfer (fuel
-F me wia nste e
st - Interfacial area convaction ejection, cladding
temperature - momentum exchange '
distribution - heat and mass transfer ablation, etc.)
Nuclear power Heat lransf
distribution
Neutronics Structure
- fuel pin heat transfer
- space, lime-dependent - in-pin fuel motion
neutron transport - fuel/FP gas ejection
- decay heal model = pin failure and disruption
- heat transfer in wrapper lube
Nuclear power

distribution
\ Mass and /

Joint ICTP-IAEA Course on SCIence
and Technology o\ Y3 q

temperature
distribution




PARCS Coupling Example

Thermal-Hydraulics:

Neutronics:

ul

* Uses coolant and fuel
properties for local node

Sends moderator temp., - diti
conditions

vapor and liquid
densities, void fraction,
boron conc., and
average, centerline, and
surface fuel temp.

Uses neutronic power as
heat source for

conduction

v g

T. Kozlowski and T. Donner, Presentation to USNRC, 2006.
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N Example

3-D Power Distribution

Boron Concentr.
Power Level
Control Rods
Reload Pattern

3-D Water Density Distribution
3-D Fuel Temp. Distribution

depending on COBRA channels
local node o
conditions
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Important Aspects to Coupling

* Overall coupling scheme
* Variable transfer method

* Initial conditions, boundary conditions, time step control and
convergence

* Mapping and Grouping (Spatial Mapping)
* Time interval for transfers (Temporal Mapping)
* Validation, qualification and quality assurance
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Example Coupling Schemes
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Mapping

* Mapping is the term used to
specify how a variable is
transferred across the multi-
physics simulation

— While NK calculates power
distribution at each node, often
these nodes do not necessarily
match the TH nodal scheme, or may
have to be processed before
passing.

* Mapping is also a term used
to "group” similar fuel
assemblies into a single
simulation channel - speed
up TH simulations.

— Reduces the complexity of the TH
model
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Spatial Coupling:
General Idea of Spatial Mapping

* Mapping determines

— where to deposit NK node power in the T/H code
* Part of NK power goes to TH cell for direct moderator heating
* Part of NK power goes to HS cell for fuel heat source

— where to deposit TH cell properties in NK code
* T/H and HS sends temperatures/densities feedback to NK node

* Weight specifies the fraction of the total neutronic power
generated in a particular node that is deposited into its
associated TH and HS cell

* Weights are usually geometric volume fractions determined
by what fraction of neutronic node lies in the volume of
corresponding TH and HS cell
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Spatial Coupling:
Important notes on mapping

* Sum of weights for each neutronic node MUST sum up to
1.0

* All neutronic nodes have to be mapped somewhere in the
T/H code

* Mapping non-conforming meshes is possible, but makes
mapping difficult,

— very coarse T/H mesh to very fine neutronic mesh

* 1-1 mapping is ideal but not practicable
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Spatial Coupling:
Reflector mapping
* Radial reflector:

— additional heat structure with no power mapped to the
TH (bypass) channel should be used

* Axial reflector

— Heat structures should have additional axial evevation,
but the upper and lower ones will have no power
(representing axial reflector for mapping)

— TH-channels should also have additional axial elevations
but only from 2 to N-1 represents the active core
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Possible Mapping/Grouping
Philosophy

* Geometry

— the fuel bundles are grouped together
according their geometry e.g. inlet
orifices.

* Thermal-Hydraulic

— the cluster of channels represents similar
thermal-hydraulic characteristics e.g. void
fraction or flow

* Exposure

— channel grouping according to burnup.
°* Power

— grouping according peaking factors -
neutron flux fundamental mode (need of
steady-state calculations).

* Higher flux mode

— grouping according to first azimuthal and
higher harmonic modes (need of steady-
state eigenvalues calculations).

Importance 2 physically based

argiiping may,iddiice the uncertainty
= el . u2011 NK and




BWR CR DROP - Effect of Grouping
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BWR Turbine Trip
— Effect of Grouping
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OECD/NEA MSLB Benchmark:
Example Execution Sequence

Flow Development
RELAPS transnt

stand-alone
* Steady-State RELAP5 RELAP5/  RELAP5/
Eigenvalue Calculation EANES Gaales

RELAPS restarted in
stdy-st mode

PARCS performs eigenvalue calculation
* Transient Calculation

RELAPS restarted in transnt mode
wierenen o PARGS obtains transient flux solution
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BWR - SCWR Comparison

* The BWR concepts are similar to SCWR

— High Moderator/Coolant density changes in the core
— Coupling between density-reactivity effects

— Possible no SG — direct cycle

— Similar safety systems and features.

— Stability

* Moving forward we can study BWR, ABWR, ESBWR to
learn coupling impacts and methods for SCWR.
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BWR Stability

* The stability of BWR reactor systems has been a concern
from the inception of this reactor type, and extensive
experimental and theoretical studies have been performed
to design a stable fuel and core configuration.

* A wide review of reported instability events can be found in
[D’Auria, SOAR BWR Stability Report].

— “The reactor core and associated coolant, control and protection
systems shall be designed to assure that power oscillations which
can result in conditions exceeding specified acceptable fuel design
limits are not possible or can be reliably and readily detected and
suppressed”.
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BWR Instabilities

e 2-phase instabilities in BWRs are considered in BWR
operations and safety.

— First, BWR can experience in-phase (core wide) or out-of-phase
(regional) oscillations.

— Second, some NCTH instabilities in reactor cores have resulted in
stable, finite amplitude oscillations,

— others lead to increasing amplitude oscillations until scram.
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Need for Coupled Analysis in SCWR

* 3D-kinetic-thermalhydraulics analysis of:

— Design Assist

— Normal Operating Conditions (accurate channel powers, margins,
flows)

— Stability Analyses (similar to BWR)

— AOO (asymmetrical behaviour either within the postulate accident,
or as a result of strong feedback effects)

— DBAs
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Steady State SCWR Coupled
Analysis

* Steady State coupled solution (XIAO-JING LIU and XU
CHENG, 2009)
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Evolution of Coupling

* In traditional reactor core analysis for both steady-state and
transient calculations of LWR conventional nuclear power plants,
condensed few-group two-dimensional (2-D) cross-section sets
are used as input data.

— These cross-section sets are generated by separate database
calculations using characteristic weighting spectra and are
parameterised in terms of burn-up and thermal-hydraulic feedback
parameters.

— Under the real reactor conditions, especially in transient situations,
these spectra change and the 2-D cross-section modelling based on a
parameterisation model only approximately describes the effects of
neutron flux distributions, which change in space, time and energy.

* This so-called 2-D off-line cross-section generation and
modelling constitutes a basic input data uncertainty affecting the
results of coupled 3-D neutronics/thermal-hydraulic calculations.
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Coupling Limitations

* Often the initial conditions (i.e., core burn-up level) over a fuel cycle can
lead to different results - necessitates several simulations.

— Cross-sections are dependent on burn-up, control variables and thermal-
hydraulic properties.

* The burn-up dependence of cross-sections is a three-dimensional vector of exposure,
spectral history and burnable poison history (for PWR) or control rod history (for
BWR). It is based on isotopic depletion.

— As fuel is burnt the isotopic content is changed in the fuel and, therefore the
cross-section behaviour changes.

* For example, with the production of Pu isotopes there is a hardening of the cross-
section spectrum due to the increase of Pu in the fuel.

* Other changes occur due to the decay and production of fission products.

— This means that even if all other thermal-hydraulic properties are constant (i.e.
steady-state conditions) there is still a change in the cross-section behaviour
due to the long-term change in isotopes in the fuel while it is being depleted or
(as it is usually called) changes in nodal isotopic.
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Subtle Limitations

* A strong history effect can be seen if the depletion calculation is performed
at core average thermal-hydraulic conditions.

— This is called a density history effect.

— The density of the coolant at the core outlet is smaller than the density of the core
inlet (Tout > Tave > Tin), meaning that if a calculation is performed at core average
conditions the neutron behaviour will be modelled inaccurately.

— At the core inlet, the actual cross-sections contain more moderation than the values
calculated at average conditions and less moderation at the top of the core.

* Further, if the approximate values are used by the nodal code the
calculated power is shifted by the density of the water when thermal-
hydraulic feedback is considered in the calculation.

— The density history has a direct effect on the axial power shape and produces a
power shape that is skewed towards the bottom of the core.

— The cross-sections at the bottom of the core are generated based on under-
moderated conditions and on over-moderated conditions at the top of the core.

* The modelling of the cross-sections for the axial temperature distribution in
a reactor core is very important to accurately predict the axial power
distribution.
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Conclusions

* 3D Neutronics coupled to Thermalhydraulic is an important
feature in existing LWR, HWR and future SCWR designs.

* Methodologies continue to evolve.
* Good coupling should consider:

— Method (internal, external, tight, loose...)
— Mapping (spatial and temporal) & Grouping
— Relaxation and convergence

— No “best-practices” yet = but maybe soon to come.

* Similar complexity as the CFD world which has developed a best
practices guideline.
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