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Objectives
Objectives of the lecture are for understanding 
of
• Plant dynamics calculation models
• Plant control system
• Plant start-up system and thermal 

consideration during start-up
• Linear stability analysis method and analyses 

of thermal hydraulic and NT coupled stability 
at rated power and during start-up
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Plant dynamics calculation

1. Single channel calculation model
2. Node junction model
3. Plant dynamics calculation model
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Main plant system of Super LWR
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Models of fuel and core 
for thermal hydraulic analysis

(c) CFD analysis model
of a fuel channel

(b) Subchannel analysis model 
of fuel assembly

(a) Single channel analysis model of 
a fuel rod and a core
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Single-Channel (Heat Transfer Calculation) Model

Fuel Rod

Cladding Coolant

Pellet Gap

Radial Heat Conduction / 
Convection Model

Axial Heat Transport 
Model
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Single-Channel Thermal-Hydraulic Calculation Model of
Fuel and Water Rod
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Node Junction Model
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Plant Dynamics Analysis Model and Calculation Flow Chart
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Calculation model

• Neutron kinetics model

• Fuel rod heat transfer model

• Fuel channel thermal-hydraulic model

• Ex-core circulation model
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Neutron kinetics model

• point kinetics model with six delayed neutron precursor groups

• Doppler and density reactivity feedback
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where, )(tn : number of neutrons 
 )(tCi : precursor concentration of delayed neutron group i  
 t : time 
 i : fraction of delayed neutron group i  
  : 



6

1i
i  

 Δ : reactivity 
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Fuel Rod Heat Transfer Model
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• Only radial heat transfer is considered.

1313



where, pC : specific heat of fuel pellet [J/kg-K] 
 fk : thermal conductivity of fuel pellet [W/m-K] 

 q  : power density [W/m3] 
 r : radial distance [m] 
 fT : fuel pellet temperature [K] 
 f : fuel pellet density [kg/m3]. 

where, fk : average thermal conductivity of pellet [W/m-K] 
 gh : thermal gap conductance [W/m2-K] 
 ck : thermal conductivity of cladding [W/m-K] 
 "q : heat flux from fuel pellet [W/m2] 
 fr : fuel pellet radius [m] 
 ct : cladding thickness [m] 
 ave

fT : fuel pellet average temperature [K] 
 sT : cladding surface temperature [K]. 

where, ch : heat transfer coefficient between cladding surface and coolant [W/m2-K] 
 cr : cladding radius [m] 
 sT : cladding surface temperature [K] 
 T : coolant bulk temperature [K]. 
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Thermal conductivity of LWR fuel pellet

where,  ave
fT : average temperature [K]  
fk  : thermal conductivity of fuel pellet [W/m-K] 
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Thermal-Hydraulic Model

(Fuel Channel and Water Rod)

Mass Conservation:

• Single-channel Single-phase One-dimensional Model

• Forward finite difference method for axial nodalization
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where, t : time [s] 
 z : position [m] 
  : coolant density [kg/m3] 
 u : fluid velocity [m/s] 
 h : specific enthalpy [J/kg] 
 q  : heat flux at fuel rod surface [W/m2] 
 A : flow path area of fuel channel [m2] 
 eP : wetted perimeter of fuel rod [m] 
 P : pressure [Pa] 
 g : gravitational acceleration 
 hD : hydraulic equivalent diameter of fuel channel [m] 
 Re : Reynolds number 
  : vertical angle of fuel channel 
 f : frictional coefficient 
   for example, 25.0Re0791.0 f  (Blasius equation). 
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Ex-core Circulation Model

Orifice Model:

Feedwater pump 
model:

Feedwater pipe model:

Exit valve model:
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where, P : pressure [Pa] 
 ΔP : pressure drop [Pa] 
 P : pressure change of pump [Pa] 
  : form pressure drop coefficient 
  : coolant density [kg/cm3] 
 u : fluid velocity [m/s] 
 u : fluid velocity change of pump 
 pumpC : pressure drop coefficient of pump 
 z : position [m] 
 t : time [s] 
 f : friction pressure drop coefficient 
 D : diameter of feedwater pipe [m] 
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Plant control

2020



Q5. Plant contol system?
      How to control reactor power,
      steam (outlet coolant) temperature, 
      and reactor pressure?
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A5. Study / follow BWR control system design
      prepare plant dynamics code.

procedure 
     1. Find sensitivity of control parameters
     2. Design control system
     3. Assess stable response against pertubations
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Plant control system
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Step response – Reactivity Insertion -
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Step response - Change of FW flow rate -

FW flow rate decreases stepwise to 95%.

Reactor power is not so sensitive to FW flow rate.
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Why reactor power is not sensitive to flow rate?
• Density change is small in WR because heat transfer is small 
between fuel channels and WR.

• More than 70% (volume) of water is in WR.

Change of average water density is small.

→ Reactivity change is small.
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Step response 
- Change of turbine control valve opening -

Main steam flow rate is decreased to 95%.

Pressure and Main steam temperature are sensitive 
to turbine control valve opening.
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Power control




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max

max /
v

bev
v

v: control rod drive speed [cm/s]
vmax: maximum speed [cm/s]
e : deviation of the power from the setpoint
b : coefficient that converts power deviation

to maximum drive speed 
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Steam temperature control


t

IP dtteKteK
dt
tdu

0
)()()(

u(t): Feedwater demand signal [%]

e(t): Deviation of main steam temperature from setpoint

Kp: Proportional gain [%]

KI: Integral gain [% s-1]

Kp and KI are optimized as 0.5 and 0.0, respectively.
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Pressure control system

K
tPPtVr set )(100)( 


dt
tdV

dt
tdVrtVrtV )(5)(2)()( 

Same as BWR

Vr(t): Demand signal of opening [%]

V(t): Valve Opening [%]

Pset: Pressure setpoint [MPa]

P(t): Turbine inlet pressure [MPa]

K: Gain converting pressure deviation into valve opening [MPa]

K is optimized as 0.25MPa.
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Characteristics of FW pumps and 
turbine control valves
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- Setpoint change of reactor power -
Setpoint of reactor power: 100 → 90%
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- Decrease in feedwater temperature -

Feedwater temperature: 280 → 270℃
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- Decrease in feedwater flow rate -

Coolant density coefficient [dk/k/(g/cm3)] 0.04 0.1 0.2 0.4 0.6 1.0

Power variation [%] 2 3 6 11 18 31
Steam temperature variation [℃] 11 10 8 7 6 -
Settling time [s] 60 40 30 60 90 -
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- Setpoint change of steam 
temperature -

Setpoint of main steam temperature: 500 → 504℃
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- Setpoint change of pressure -
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Comparison of plant control strategy

BWR PWR FPP SCR
Electric 
power

Reactor 
power

Turbine 
control valve Turbine 

control 
valve and 
Boiler 
input

Reactor 
power

Steam 
pressure

Turbine 
control valve

Reactor 
power

Turbine 
control valve

Reactor 
Power

Recirculation
(and CR)

Boron
(and CR)

CR

BWR: Turbine-following-Reactor

PWR: Reactor-following-Turbine

FPP: Turbine-Boiler-coordination

SCR: Turbine-following-Reactor



Plant start-up

1. Thermal criteria:
Maximum cladding temperature should not exceed 
the limit at full power. 
2. Mechanical stress criteria (not discussed here):
Thermal stress should not be excessive.
Ex. Coolant temperature rise of the reactor pressure 
vessel should be below 55C/h for BWR
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Q6: Plant Start-up system?

Q7: How to start-up the reactor and turbine?

Q8: What are limiting parameters during start-up?

Q9: When starting from subcritical-pressure
       boiling transition occurs inevitably in once-through reactor,
       How to deal with it?  

3939



A6: Refer to supercritical-fossil-fired power plants(FPP)

A7: Plant start-up analysis and stability analysis

A8: Maximum cladding temperature / 
       moisture content in steam (not to damage tubine blades)/ 
       (thermal-hydraulic and NTcoupled) stability

A9: Keep cladding temperature below that of the rated power/ 
       same as the FPP
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Constant Pressure Startup System

Constant pressure supercritical 
water-cooled reactor

Nuclear heating starts at supercritical pressure.

4141



Sliding pressure supercritical water-cooled reactor

Nuclear heating starts at subcritical pressure.

Water separator is installed on a bypass line.

Sliding Pressure Startup System 4242



Startup Systems

• Constant pressure startup system

- nuclear heating starts at supercritical pressure

- constant pressure during load change

- a flash tank and pressure-reducing valves required

• Sliding pressure startup system

- nuclear heating starts at a subcritical pressure

- sliding pressure operation at low load

- steam-water separator, drain tank, drain valves and 
additional heaters required
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Sliding Pressure Startup Procedure
(1) Start of Nuclear Heating
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Maximum allowable power

Pressurization Phase

• maximum cladding surface temperature must be less than 620 oC.

• boiling must not occur in the water rods.

• Increasing the flow rate can 
increase the maximum 
allowable power.

• Decreasing the feedwater 
temperature can increase the 
maximum allowable power.
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Minimum required power

Pressurization Phase

• core outlet enthalpy must be high enough to provide the required turbine inlet 
steam enthalpy.

• Decreasing the flow rate 
can decrease the minimum 
required power.

• Increasing the feedwater 
temperature can decrease 
the minimum required 
power.
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Pressurization phase
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Temperature Raising Phase
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Sliding Pressure Startup Curve
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Constant 
Pressure 
Startup

Sliding Pressure Startup

Flash tank 
(bypass)

Separator  
(main line)

Separator  
(bypass)

Separator  
(bypass)

Flow rate 25% 100% 35% 35%
Design pressure (MPa) 7.6 27.5 25 25
Design temperature (oC) 291 500 400 400
Material SBV2 SCMV4 SBV2 SCMV4
Shell length/thickness(m) 4.0 / 0.1 3.9 / 0.26 3.9 / 0.12 3.9 / 0.19
Inner diameter (m) 3.4 1.283 1.08 1.56
Cross-sectional area (m2) 9.08 1.293 0.91 1.91
No. of separators needed 1 4 2 1
Unit weight (kg) 52300 40500 15750 37600
Total weight (kg) 52300 162000 31500 37600

Component weights required for startup



Stability

5252
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Linear Stability Analysis



Frequency Domain Linear Stability Analysis

Write governing equations (core thermal-hydraulics, 
neutron kinetics, fuel dynamics, ex-core systems)

Linearize governing equations by perturbation

Perform Laplace transform

Obtain overall system transfer functions from open 
loop transfer functions

Determine the roots of characteristic equation: 
(1+G(s) H(s) = 0)

Calculate decay ratio from the dominant pole

G(s)

H(s)

x yu

f

G(s)H(s)1
G(s)

xδ
yδ



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Dependence of decay ratio on the axial mesh size
• Decay ratio generally increases as the axial mesh size decreases.

• Thus, the decay ratio is determined by extrapolating to the zero 
mesh size.

• Pressure = 8 MPa

• Power = 20%

• Flow rate = 35%

• Orifice pressure 
drop coefficient = 30
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Decay ratio = y
2
/y

1

steady-state y
2

y
1

t
2t

1

t0

y(t)

time (t)

Stability Criteria

The same stability criteria for 
BWR are used for Super LWR.

Normal operating conditions All operating conditions

Thermal-hydraulic 
stability

Decay ratio  0.5
(damping ratio  0.11)

Decay ratio < 1.0
(damping ratio > 0)

Coupled neutronic 
thermal-hydraulic 
stability

Decay ratio  0.25
(damping ratio  0.22)

Decay ratio < 1.0
(damping ratio > 0)



Linear Stability Analysis Code
(Supercritical pressure)

• Neutron kinetics model

• Fuel rod heat transfer model

• Water rod heat transfer model

• Fuel channel thermal-hydraulic model

• Water rod thermal-hydraulic model

• Ex-core circulation model

5757
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Fuel Channel Thermal-hydraulics Model 
(subcritical pressure)

• One-dimensional single-channel model

• Homogeneous equilibrium two-phase mixture is assumed.

• Phasic slip and subcooled boiling are not considered.

• Constant inlet subcooling is assumed.

• Constant system pressure and constant phasic properties are assumed.
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Fuel Rod Heat Transfer Model

Single-phase heat transfer

Nucleate boiling

Film boiling

Forced convective heat transfer

Dittus- Boelter equation

Thom equation

Groeneveld correlation

Schrock-Grossman correlation
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• Lumped parameter model

• one-dimensional radial heat transfer equations

Supercritical-pressure heat 
transfer

Oka-Koshizuka correlations
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Water Rod Heat Transfer Model
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• axial heat transfer neglected

• heat conduction through the water rod wall not considered

• Since water rod wall temperature is less than saturation temperature, 
boiling does not happen on the water rod outer surface, as well as on the 
water rod inner surface.

• single phase heat transfer is assumed for water rod heat transfer

• Dittus-Boelter equation is used to calculate heat transfer coefficient.
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Heat Transfer at Supercritical Pressure
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Heat transfer correlations at subcritical pressure
Pre-CHF Heat Transfer Correlations
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Heat transfer correlations at subcritical pressure
Post-CHF Heat Transfer Correlations

Transition Boiling (McDonough, Milich, and King Correlation)
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Critical heat flux

 In order to predict dryout, it is important to determine CHF as 

accurately as possible.

 1995 CHF lookup table (Groeneveld et al.) is used in this study 

because of its wider applicable ranges of parameters compared with 

other CHF correlations.

 The CHF lookup table is based on the CHF data between 0.1 MPa 

and 20 MPa. The CHF data for near critical pressures are limited. 

 The spacer effects are not considered in this study.

 Consideration of spacers will increase CHF and enhance heat 

transfer.
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Thermal-Hydraulic Stability 
(Supercritical pressure)



66

Block diagram for thermal-hydraulic stability

Transfer function from pressure 
difference to inlet flow velocity
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Frequency Response of Thermal-Hydraulic Stability

Gain Response Phase Response
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• A resonant peak occurs due to the thermal-hydraulic feedback effect.
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Thermal-Hydraulic Stability : Decay Ratio

Hottest Channel Average Channel
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Decay ratios for thermal-hydraulic stability of 
Super LWR (full power operation)

Required orifice pressure drop coefficient = 6.18

Required orifice pressure drop = 0.0054 MPa

(Core pressure drop = 0.133 MPa)



70

10 20 30 40 50 60 70 80 90 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

orifice pressure
drop coeff = 

 

 

D
e
c
ay

 r
at

io

Power (%)

 =20
 =16
 =12
 =10
 =8
 =6
 =4
 =2

Decay ratios of thermal-hydraulic stability of Super LWR 
at partial power operations (maximum power channel)



71

0 2 4 6 8 10 12 14 16 18 20

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

 = 8.6762

M
ax

im
u
m

 d
e
c
ay

 r
at

io

Orifice pressure drop coefficient

Relation between maximum decay ratio and 
orifice pressure drop coefficient for thermal-hydraulic 

stability (partial power operations)

Required orifice pressure drop coefficient = 8.68

Required orifice pressure drop = 0.0075 MPa



72

Decay Ratio Map for Thermal-hydraulic Stability
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Coupled Neutronic Thermal-Hydraulic 
Stability (Supercritical pressure)
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Neutron 
kinetics

Fuel rod heat 
transfer
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heat transfer
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Gain Response of Coupled Neutronic Thermal-
Hydraulic Stability  (100% Average Power Channel)
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The presence of downward flowing 
water rods 

• reduces the density reactivity 
feedback effect

• increases the resonant peak

• increases the resonant frequency

• thus makes the reactor system less 
stable
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Phase Response of Coupled Neutronic Thermal-
Hydraulic Stability  (100% Average Power Channel)
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• The presence of water rods increases the phase lag of the closed loop  
transfer function. (due to the time delay in the heat transfer to the water 
rods)
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Flow rate required for coupled neutronic thermal-
hydraulic stability at partial power operation
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Decay Ratio Map for Coupled Neutronic 
Thermal-hydraulic Stability

Decay ratio increases with power to flow rate ratio.
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Stability Analysis during Sliding-
Pressure Startup

• Coupled neutronic thermal-hydraulic stability analysis

• Thermal-hydraulic stability analysis

• Thermal-hydraulic analysis

• Sliding pressure startup procedures
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Gain and phase response of coupled neutronic thermal-
hydraulic stability of Super LWR (at subcritical pressure)

(8 MPa pressure; 20% power; 35% flow rate)

Gain response Phase response
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A gain peak occurs around 0.8 rad/s due to neutronic feedback (coolant transit 
time ~ 3.2 s).
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Coupled neutronic thermal-hydraulic stability 

(Pressurization phase)
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Coupled neutronic thermal-hydraulic stability

(Power-raising phase)
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Gain and phase response of thermal-hydraulic stability 
of Super LWR (at subcritical pressure)
(8 MPa pressure; 20% power; 35% flow rate)

Gain response Phase response

A gain peak occurs around 2 rad/s due to flow feedback (coolant transit time ~ 
3.2 s).
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Thermal-hydraulic stability (Pressurization phase)
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Thermal-hydraulic stability (Power-raising phase)
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Thermal-Hydraulic Analysis (Pressurization phase)
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Thermal-Hydraulic Analysis (Power-raising phase)
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Sliding Pressure Startup Curve

0

10

20

30

40

50

60

70

80

90

100

0

50

100

150

200

250

300

350

400

450

500

power-raisingline
switching

pressurizationturbine
startup

start of
nuclear
heating

start of
feedwater
pump

 

R
at

io
 (

%
)

 T
e
m

p
e
ra

tu
re

 (
o C

) 
/
 P

re
ss

u
re

 (
b
ar

)

feedwater flow rate

core power

main steam
pressure

main steam temperature

feedwater temperature



92

0

10

20

30

40

50

60

70

80

90

100

0

50

100

150

200

250

300

350

400

450

500

power
raising

temperature
raising

line
switching

pressurizationturbine
startup

start of
nuclear
heating

start of
feedwater
pump

 

 

R
at

io
 (

%
)

reactor power

feedwater
flow rate

main steam
pressure

feedwater temperature

core outlet temperature

 T
e
m

p
e
ra

tu
re

 (
o C

) 
/
 P

re
ss

u
re

 (
b
ar

)

0

10

20

30

40

50

60

70

80

90

100

0

50

100

150

200

250

300

350

400

450

500

power-raisingline
switching

pressurizationturbine
startup

start of
nuclear
heating

start of
feedwater
pump

 

R
at

io
 (

%
)

 T
e
m

p
e
ra

tu
re

 (
o C

) 
/
 P

re
ss

u
re

 (
b
ar

)

feedwater flow rate

core power

main steam
pressure

main steam temperature

feedwater temperature

Sliding pressure startup curve

(Thermal criteria only)

Sliding pressure startup curve

(Both Thermal and Stability 
criteria)



Revised startup system of Super LWR 
and the Super FR

Circulation 
pump

Steam drum
Water level 
control valve Steam 

drum valve
Containment

Reactor clean-up 
system for startup

to condensers

to turbines

from feedwater pumps

Cooling 
system
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