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PART 1: THERMOPHYSICAL PROPERTIES OF WATER AND CARBON 
DIOXIDE AT CRITICAL AND SUPERCRITICAL PRESSURES 
 

1.1 INTRODUCTION 
 

Prior to a general discussion on specifics of thermophysical properties and forced-convective 
heat transfer at critical and supercritical pressures, it is important to define special terms and 
expressions used at these conditions.  For a better understanding of these terms and expressions 
their definitions are listed below together with complimentary Figures 1.1 and 1.2. 

 

Definitions of Selected Terms and Expressions Related to Critical and Supercritical 
Regions 

 
Compressed fluid is a fluid at a pressure above the critical pressure, but at a temperature below 
the critical temperature. 
 
Critical point (also called a critical state) is a point in which the distinction between the liquid 
and gas (or vapour) phases disappears, i.e., both phases have the same temperature, pressure and 
volume or density.  The critical point is characterized by the phase-state parameters Tcr, Pcr and 
Vcr (or ρcr), which have unique values for each pure substance. 
 
Deteriorated Heat Transfer (DHT) is characterized with lower values of the wall heat transfer 
coefficient compared to those for normal heat transfer; and hence has higher values of wall 
temperature within some part of a test section or within the entire test section. 
 
Improved Heat Transfer (IHT) is characterized with higher values of the wall heat transfer 
coefficient compared to those for normal heat transfer; and hence lower values of wall 
temperature within some part of a test section or within the entire test section.  In our opinion, 
the improved heat-transfer regime or mode includes peaks or “humps” in the heat transfer 
coefficient near the critical or pseudocritical points. 
 
Near-critical point is actually a narrow region around the critical point, where all thermophysical 
properties of a pure fluid exhibit rapid variations. 
 
Normal Heat Transfer (NHT) can be characterized in general with wall heat transfer 
coefficients similar to those of subcritical convective heat transfer far from the critical or 
pseudocritical regions, when they are calculated according to the conventional single-phase 
Dittus-Boelter-type correlations: Nu = 0.0023 Re0.8Pr0.4. 
 
Pseudo-boiling is a physical phenomenon similar to subcritical pressure nucleate boiling, which 
may appear at supercritical pressures.  Due to heating of a supercritical fluid with a bulk-fluid 
temperature below the pseudocritical temperature (high-density fluid, i.e., “liquid”), some layers 
near the heating surface may attain temperatures above the pseudocritical temperature (low-
density fluid, i.e., “gas”).  This low-density “gas” leaves the heating surface in the form of 
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variable density (bubble) volumes.  During the pseudo-boiling, the wall heat transfer coefficient 
usually increases (improved heat-transfer regime). 
 
Pseudocritical line is a line, which consists of pseudocritical points. 
 
Pseudocritical point (characterized with Ppc and Tpc) is a point at a pressure above the critical 
pressure and at a temperature (Tpc > Tcr) corresponding to the maximum value of the specific 
heat at this particular pressure. 
 
Pseudo-film boiling is a physical phenomenon similar to subcritical-pressure film boiling, which 
may appear at supercritical pressures.  At pseudo-film boiling, a low-density fluid (a fluid at 
temperatures above the pseudocritical temperature, i.e., “gas”) prevents a high-density fluid (a 
fluid at temperatures below the pseudocritical temperature, i.e., “liquid”) from contacting 
(“rewetting”) a heated surface.  Pseudo-film boiling leads to the deteriorated heat-transfer 
regime. 
 
Supercritical fluid is a fluid at pressures and temperatures that are higher than the critical 
pressure and critical temperature.  However, in the present chapter, the term supercritical fluid 
includes both terms – a supercritical fluid and compressed fluid. 
 
Supercritical “steam” is actually supercritical water, because at supercritical pressures fluid is 
considered as a single-phase substance.  However, this term is widely (and incorrectly) used in 
the literature in relation to supercritical “steam” generators and turbines. 
 
Superheated steam is a steam at pressures below the critical pressure, but at temperatures above 
the critical temperature. 
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Figure 1.1. Pressure-Temperature 
diagram for water. 

Figure 1.2. Temperature and HTC profiles 
along heated length of vertical tube (Kirillov et 
al., 2003): Water, D=10 mm and Lh=4 m. 
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1.2. THERMOPHYSICAL PROPERTIES AT CRITICAL AND SUPERCRITICAL 
PRESSURES 
 
The general trends of various properties near the critical and pseudocritical points (Pioro, 2008; 
Pioro and Duffey, 2007) can be illustrated on a basis of those of water and carbon dioxide (Figs. 
1.3-1.6).  Figures 1.3 and 1.4 show variations in the basic thermophysical properties of water at 
the critical (Pcr = 22.064 MPa) and three supercritical pressures (P = 25.0, 30.0, and 35.0 MPa) 
(also, in addition see Fig. 1.5) and those of carbon dioxide at the equivalent pressures to those of 

water (the conversion is based on � �
���
�
���

= � �
���
�

��

).  Thermophysical properties of 105 pure 

fluids including water, carbon dioxide, helium, refrigerants, etc., 5 pseudo-pure fluids (such as 
air) and mixtures with up to 20 components at different pressures and temperatures, including 
critical and supercritical regions, can be calculated using the NIST REFPROP software (2010).  
Critical parameters of selected fluids are listed in Table 1.1. 

At critical and supercritical pressures a fluid is considered as a single-phase substance in 
spite of the fact that all thermophysical properties undergo significant changes within the critical 
and pseudocritical regions.  Near the critical point, these changes are dramatic (see Figures 
1.3-1.5).  In the vicinity of pseudocritical points, with an increase in pressure, these changes 
become less pronounced (see Figs. 1.3, 1.4 and 1.7).   
 

Table 1.1. Critical parameters of selected fluids (Pioro and Duffey, 2007). 

 

Fluid Pcr, 
MPa 

Tcr, 
ºC 

ρρρρcr, 
kg/m3 

Carbon dioxide (CO2) 7.3773 30.978 467.6 
Freon-134a (1,1,1,2-tetrafluoroethane, CH2FCF3) 4.0593 101.06 511.9 
Water (H2O) 22.064 373.95 322.39 
 
Also, it can be seen that properties such as density and dynamic viscosity undergo a significant 
drop (near the critical point this drop is almost vertical) within a very narrow temperature range 
(see Figs. 1.3a,b, 1.4a,b and 1.5), while the kinematic viscosity and specific enthalpy undergo a 
sharp increase (see Figs. 1.3d,g, 1.4d,g and 1.5).  The volume expansivity, specific heat, thermal 
conductivity and Prandtl number have peaks near the critical and pseudocritical points (see Figs. 
1.3c,e,f,h, 1.4c,e,f,h, 1.5 and 1.6).  The magnitude of these peaks decreases very quickly with an 
increase in pressure (see Fig. 1.7).  Also, “peaks” transform into “humps” profiles at pressures 
beyond the critical pressure.  It should be noted that the dynamic viscosity, kinematic viscosity 
and thermal conductivity undergo through the minimum right after the critical and pseudocritical 
points (see Fig. 1.3b,d,f, and 1.4b,d,f). 
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Figure 1.3a. Density vs. Temperature: 

Water. 
Figure 1.4a. Density vs. Temperature: 

Carbon Dioxide. 
 
 

 
 

Figure 1.3b. Dynamic viscosity vs. 
Temperature: Water. 

Figure 1.4b. Dynamic viscosity vs. 
Temperature: Carbon Dioxide. 
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Figure 1.3c. Volume expansivity vs. 

Temperature: Water. 
Figure 1.4c. Volume expansivity vs. 

Temperature: Carbon Dioxide. 
 

 

 

 
Figure 1.3d. Kinematic viscosity vs. 

Temperature: Water. 
Figure 1.4d. Kinematic viscosity vs. 

Temperature: Carbon Dioxide. 
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Figure 1.3e. Specific heat vs. Temperature: 

Water. 
Figure 1.4e. Specific heat vs. Temperature: 

Carbon Dioxide. 
 

 

 

 
Figure 1.3f. Thermal conductivity vs. 

Temperature: Water. 
Figure 1.4f. Thermal conductivity vs. 

Temperature: Carbon Dioxide. 
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Figure 1.3g. Specific enthalpy vs. 

Temperature: Water. 
Figure 1.4g. Specific enthalpy vs. 
Temperature: Carbon Dioxide. 

 

 

 

 
Figure 1.3h. Prandtl number vs. 

Temperature: Water. 
Figure 1.4h. Prandtl number vs. 
Temperature: Carbon Dioxide. 
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Water, P=25 MPa
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Figure 1.5. Variations of selected thermophysical properties of water near pseudocritical 

point: Pseudocritical region at 25 MPa is about ±25°C around pseudocritical point. 
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Figure 1.6. Specific Heat, Volume Expansivity and Thermal Conductivity vs. Temperature: 

Water, P = 24.5 MPa. 



 11 

Temperature Ratio, T/Tcr

1.0 1.1 1.2 1.3 1.4 1.5 1.6

S
pe

ci
fic

 H
ea

t, 
kJ

/k
g 

K

5

7

10

20

30

50

70

3

6

8

15

40

60

80

4

25

2.5

p  =  25 MPa 
p  =100 MPa 
p  =200 MPa 
p  =300 MPa 

Water

 
Figure 1.7. Specific heat variations at various pressures: Water. 

 
Table 1.2. Values of pseudocritical temperature and corresponding peak values of specific 
heat within wide range of pressures (Pioro and Duffey, 2007). 
 

Pressure, MPa Pseudocritical temperature, ºC Peak value of specific heat, kJ/kg·K 
23 377.5 284.3 
24 381.2 121.9 
25 384.9 76.4 
26 388.5 55.7 
27 392.0 43.9 
28 395.4 36.3 
29 398.7 30.9 
30 401.9 27.0 
31 405.0 24.1 
32 408.1 21.7 
33 411.0 19.9 
34 413.9 18.4 
35 416.7 17.2 

 
The specific heat of water (see Fig. 1.3e) (as well as of other fluids, for example, for carbon 
dioxide, see Fig. 1.4e) has a maximum value at the critical point.  The exact temperature that 
corresponds to the specific-heat peak above the critical pressure is known as the pseudocritical 
temperature (see Fig. 1.1 and Table 1.2).  At pressures approximately above 300 MPa (see Fig. 
1.7) a peak (here it is better to say “a hump”) in specific heat almost disappears, therefore, such 
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term as a pseudocritical point no longer exists.  The same applies to the pseudocritical line.  It 
should be noted that peaks in the thermal conductivity and volume expansivity may not 
correspond to the pseudocritical temperature (see Table 1.3 and Figure 1.6). 
 
Table 1.3. Peak values of specific heat, volume expansivity and thermal conductivity in 
critical and near pseudocritical points (Pioro and Duffey, 2007). 
 

Pressure, 
MPa 

Pseudocritical 
temperature, 

ºC 

Temperature, 
ºC 

Specific 
heat, 

kJ/kg·K 

Volume 
expansivity, 

1/K 

Thermal 
conductivity, 

W/m·K 
pcr=22.064 tcr=374.1 – ∞ ∞ ∞ 

22.5 375.6 – 690.6 1.252 0.711 
23.0 – 377.4 – – 0.538 

377.5 – 284.3 0.508 – 
23.5 – 379.2 – – 0.468 

– 379.3 – 0.304 – 
379.4 – 171.9 – – 

24.0 – 381.0 – – 0.429 
381.2 – 121.9 0.212 – 

24.5 – 382.6 – – 0.405 
– 383.0 – 0.161 – 

383.1 – 93.98 – – 
25.0 – 384.0 – – 0.389 

384.9 – 76.44 – – 
– 385.0 – 0.128 – 

25.5 386.7 – 64.44 0.107 no peak 
26.0 388.5 - 55.73 0.090 0.355 
27.0 392.0 - 43.93 0.069 0.340 
28.0 395.4 - 36.29 0.056 0.329 
29.0 398.7 - 30.95 0.046 0.321 
30.0 401.9 - 27.03 0.039 0.316 

 
In early studies, i.e., approximately before 1990, a peak in thermal conductivity was not taken 
into account.  Later, this peak was well established (see Figs. 1.3f and 1.4f) and included into 
thermophysical data and software.  The peak in thermal conductivity diminishes at about 25.5 
MPa for water (see Fig. 1.3f and Table 1.3) and at about 8.4 MPa for carbon dioxide (see Fig. 
1.4f). 
 
In general, crossing the pseudocritical line from left to right (see Fig. 1.1) is quite similar as 
crossing the saturation line from liquid into vapour.  The major difference in crossing these two 
lines is that all changes (even drastic variations) in thermophysical properties at supercritical 
pressures are gradual and continuous, which take place within a certain temperature range (see 
Fig. 1.5).  On the contrary, at subcritical pressures there are properties discontinuation on the 
saturation line: one value for liquid and another for vapour (see Fig. 1.8).  Therefore, 
supercritical fluids behave as single-phase substances.  Also, dealing with supercritical fluids we 
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apply usually a term “pseudo” in front of a critical point, boiling, film boiling, etc. 
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Figure 1.8. Density variations at various subcritical pressures for water: Liquid and 

vapour. 
 
Properties of supercritical helium and R-134a are shown in Pioro and Duffey (2007). 
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PART 2: HISTORY OF SUPERCRITICAL PRESSURES APPLICATION 
IN POWER INDUSTRY 
 
2.1. INTRODUCTION 
 
The use of supercritical fluids in different processes is not new and, actually, is not a human 
invention.  Nature has been processing minerals in aqueous solutions at near or above the critical 
point of water for billions of years (Levelt Sengers 2000).  In the late 1800s, scientists started to 
use this natural process in their labs for creating various crystals.  During the last 50 – 60 years, 
this process, called hydrothermal processing (operating parameters: water pressure from 20 to 
200 MPa and temperatures from 300 to 500ºC), has been widely used in the industrial production 
of high-quality single crystals (mainly gem stones) such as sapphire, tourmaline, quartz, titanium 
oxide, zircon and others (Levelt Sengers 2000). 
 
The first works devoted to the problem of heat transfer at supercritical pressures started as early 
as the 1930s (Pioro and Pioro 1997; Hendricks et al. 1970).  E. Schmidt and his associates 
investigated free convection heat transfer of fluids at the near-critical point with the application 
to a new effective cooling system for turbine blades in jet engines.  They found (Schmidt 1960; 
Schmidt et al. 1946) that the free convection heat transfer coefficient (HTC) at the near-critical 
state was quite high and decided to use this advantage in single-phase thermosyphons with an 
intermediate working fluid at the near-critical point (Pioro and Pioro 1997).  (In general, 
thermosyphons are used to transfer heat flux from a heat source to a heat sink located at some 
distance.) 
 
In the 1950s, the idea of using supercritical steam-water appeared to be rather attractive for 
“steam” generators.  At supercritical pressures, there is no liquid-vapour phase transition; 
therefore, there is no such phenomenon as critical heat flux or dryout.  Only within a certain 
range of parameters a deterioration of heat transfer may occur.  The objective of operating 
“steam” generators at supercritical pressures was to increase the total efficiency of a power plant.  
Work in this area was mainly done in the USA and former USSR in the 1950s – 1980s 
(International Encyclopedia of Heat & Mass Transfer 1998). 
 
At the end of the 1950s and the beginning of the 1960s, some studies were conducted to 
investigate the possibility of using supercritical fluids in nuclear reactors (Oka 2000; Wright and 
Patterson 1966; Bishop et al. 1962; Skvortsov and Feinberg 1961; Marchaterre and Petrick 1960; 
Supercritical pressure power reactor 1959).  Several designs of nuclear reactors using water as 
the coolant at supercritical pressures were developed in the USA and USSR.  However, this idea 
was abandoned for almost 30 years and regained support in the 1990s. 
 
Use of supercritical water in power-plant “steam” generators is the largest application of a fluid 
at supercritical pressures in industry.  However, other areas exist where supercritical fluids are 
used or will be implemented in the near future. 
 
The latest developments in these areas focus on: 

• increasing the efficiency of the existing ultra-supercritical and supercritical “steam” 
generators (Smith 1999); 
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• developing supercritical water-cooled nuclear reactors (Kirillov 2001a,b; Oka 2000); 
• using supercritical water in the Rankine cycle for lead-cooled nuclear reactors (Boehm et 

al. 2005) and in the Brayton cycle (Sohn et al. 2005) including the Brayton cycle for future 
Sodium Fast Reactors (SFRs); 

• using supercritical carbon dioxide in an indirect cycle of the gas cooled fast reactors 
(Hejzlar et al. 2005; Kato et al. 2005); 

• using supercritical carbon dioxide for cooling of a printed circuit (Ishizuka et al. 2005); 
• the use of near-critical helium to cool the coils of superconducting electromagnets, 

superconducting electronics and power-transmission equipment (Hendricks et al. 1970a); 
• the use of supercritical hydrogen as a fuel for chemical and nuclear rockets (Hendricks et 

al. 1970a); 
• the use of methane as a coolant and fuel for supersonic transport (Hendricks et al. 1970a); 
• the use of liquid hydrocarbon coolants and fuels at supercritical pressures in the cooling 

jackets of liquid rocket engines and in fuel channels of air-breathing engines (Altunin et al. 
1998; Kalinin et al. 1998, Dreitser 1993, Dreitser et al. 1993); 

• the use of supercritical carbon dioxide as a refrigerant in air-conditioning and refrigerating 
systems (Lorentzen 1994; Lorentzen and Pettersen 1993); 

• the use of a supercritical cycle in the secondary loop for transformation of geothermal 
energy into electricity (Abdulagatov and Alkhasov 1998); 

• the use of supercritical water oxidation technology (SCWO) for treatment of industrial and 
military wastes (Levelt Sengers 2000; Lee 1997); 

• the use of carbon dioxide in the supercritical fluid leaching (SFL) method for removal 
uranium from radioactive solid wastes (Tomioka et al. 2005) and in decontamination of 
surfaces (Shadrin et al. 2005); and 

• the use of supercritical fluids in chemical and pharmaceutical industries in such processes 
as supercritical fluid extraction, supercritical fluid chromatography, polymer processing 
and others (Supercritical Fluids 2002; Levelt Sengers 2000). 

 
Experiments at supercritical pressures are very expensive and require sophisticated equipment 
and measuring techniques (Pioro and Duffey, 2007).  Therefore, some of these studies (for 
example, heat transfer in bundles) are proprietary and hence were not published in the open 
literature. 
 
The majority of the studies deal with heat transfer and hydraulic resistance of working fluids, 
mainly water (Pioro and Duffey 2005, 2003a; Pioro et al. 2004), carbon dioxide (Duffey and 
Pioro 2005b), and helium, in circular tubes.  In addition to these fluids, forced- and free-
convection heat transfer experiments were conducted at supercritical pressures, using: 

• liquefied gases such as air and argon (Budnevich and Uskenbaev 1972), hydrogen 
(International Encyclopedia of Heat & Mass Transfer 1998; Hess and Kunz 1965; 
Thompson and Geery 1962); nitrogen (Popov et al. 1977; Akhmedov et al. 1974; 
Uskenbaev and Budnevich 1972), nitrogen tetra-oxide (Nesterenko et al. 1974; McCarthy 
et al. 1967), oxygen (Powel 1957) and sulphur hexafluoride (Tanger et al. 1968); 

• alcohols such as ethanol and methanol (Kafengauz 1983; Alad’yev et al. 1967, 1963); 
• hydrocarbons such as n-heptane (Isayev 1983; Alad’ev et al. 1976; Kaplan and 

Tolchinskaya 1974a, 1971), n-hexane (Isaev et al. 1995), di-iso-propyl-cyclo-hexane 



 16 

(Kafengauz 1983, 1969, 1967; Kafengauz and Fedorov 1970, 1968, 1966), n-octane 
(Yanovskii 1995), iso-butane, iso-pentane and n-pentane (Abdulagatov and Alkhasov 
1998; Bonilla and Sigel 1961); 

• aromatic hydrocarbons such as benzene and toluene (Rzaev et al. 2003; Abdullaeva et al. 
1991; Kalbaliev et al. 1983, 1978; Isaev and Kalbaliev 1979; Mamedov et al. 1977; 1976), 
and poly-methyl-phenyl-siloxane (Kaplan et al. 1974b); 

• hydrocarbon coolants such as kerosene (Kafengauz 1983), TS-1 and RG-1 (Altunin et al. 
1998), jet propulsion fuels RT and T-6 (Kalinin et al. 1998; Yanovskii 1995; Valueva et al. 
1995; Dreitser et al. 1993); and 

• refrigerants (Abdulagatov and Alkhasov 1998; Gorban’ et al. 1990; Tkachev 1981; 
Beschastnov et al. 1973; Nozdrenko 1968; Holman and Boggs 1960; Griffith and Sabersky 
1960). 

 
A limited number of studies were devoted to heat transfer and pressure drop in annuli, 
rectangular-shaped channels and bundles. 
 
2.2. SUPERCRITICAL THERMAL POWER PLANTS: REVIEW AND STATUS 
 
2.2.1. Russian Supercritical Units 
 
Early studies in Russia related to the heat transfer at supercritical pressures started in the late 
1940s.  In the 1950s, Podol’sk Machine-Building plant “ЗиО” (“ZiO”) (Plant by the name of 
S. Ordzhonikidze) manufactured several small experimental supercritical “steam” generators for 
research institutions such as: (i) “ВТИ” (“VTI”) – All-Union Heat Engineering Institute 
(Moscow) with “steam” parameters of 29.4 MPa and 600ºC (Shvarts et al., 1963), (ii) “ЦКТИ” 
(“TsKTI”) – Central Boiler-Turbine Institute by Polzunov (St.-Petersburg) and (iii) Kiev 
Polytechnic Institute with “steam” parameters of 39 MPa and 700ºC (Kirillov 2001). 
 
The implementation of supercritical power-plant “steam” generators in Russia (the former 
USSR) started with units having thermal powers of 300 MW (Ornatskiy et al. 1980).  Two 
leading Russian manufacturing plants: “ТКЗ” (“TKZ”) – Taganrog Power-Plant Steam 
Generator’s Manufacturing plant (Taganrog, Ukraine) and “ЗиО” (Podol’sk, Russia) developed 
and manufactured the first units, with the assistance of research institutions such as “ЦКТИ” and 
“ВТИ”.  Supercritical “steam” generators are usually the once–through type boilers (Belyakov 
1995). 
 
Power-plant “steam” generator ТПП-110 (TPP-110) manufactured at “ТКЗ” in 1961 was the 
first industrial unit operating at supercritical conditions in the former USSR, and was used at 
coal-fired power plant.  Its design included a liquid slug drain.  A total of six units were put into 
operation. 
 
Also, a power-plant “steam” generator (model ПK-39 (PK-39)) was built at “ЗиО” in 1961.  
Next year, “ЗиО” designed a new unit, ПK-41, to work with residual fuel oil and natural gas.  
Later, in 1964 and 1967, upgraded designs of ТПП-110 (units ТПП-210 and ТПП-210A) were 
developed and manufactured.  In these units, it was decided to decrease the temperature of the 
primary “steam” from 585 to 565ºC. 
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Based on industrial experience, several upgraded designs were manufactured at “ТКЗ” (units 
ТГМП-144 (TGMP-144) for residual fuel oil and natural gas, ТПП-312 (1970) for coal, ТПП-
314 (1970) for residual fuel oil and natural gas, and ТГМП-144 (1971) for residual fuel oil and 
natural gas with pressurized combustion chamber) and “ЗиО” (units ПK-50 (1963) for coal, ПK-
59 (1972) for brown coal (lignite), and П-64 (P-64) (1977) for Yugoslavian lignites). 
 
The 300-MW power-”steam”-generating units have the following characteristics: 

• “steam” capacity, t/h 950–1000 
• Pressure (primary “steam”), MPa 25 
• Temperature (primary “steam”), ºC 545–585 
• Pressure (secondary steam), MPa 3.5–3.9 
• Feed-water temperature, ºC 260–265 
• Thermal efficiency1, % 88–93 

 
The next stage in further development of supercritical “steam” generators involved an increase in 
their thermal capacity to 500 MW (units manufactured at “ЗиО”: П-49 (1965) and П-57 (1972)) 
and 800 MW (units manufactured at “ТКЗ”: ТПП-200 (1964), ТГМП-204 (1973) and ТГМП-
324; unit manufactured at “ЗиО”: П-67 (1976)). 
 
The 500-MW power-”steam”-generating units have the following characteristics: 

• “steam” capacity, t/h 1650 
• Pressure (primary “steam”), MPa 25 
• Temperature (primary “steam”), ºC 545 
• Pressure (secondary steam), MPa 3.95 
• Temperature (secondary steam), ºC 545 
• Feed-water temperature, ºC 277 
• Thermal efficiency, % 92 

The 800-MW power-”steam”-generating units have the following characteristics: 
• “steam” capacity, t/h 2650 
• Pressure (primary “steam”), MPa 25 
• Temperature (primary “steam”), ºC 545 
• Pressure (secondary steam), MPa 3.44 
• Temperature (secondary steam), ºC 545 
• Feed-water temperature, ºC 275 
• Thermal efficiency, % 92–95 

 
In 1966, the first 1000-MW ultra-supercritical plant started its operation in Kashira with a 
primary “steam” pressure of 30.6 MPa, and primary and reheat temperatures of 650 and 565ºC, 
respectively (Smith 1999). 
 

                                                 
1 This thermal efficiency is related only to a “steam”-generator.  The total or overall efficiency of a power plant will 
be significantly less (43 – 50%) due to a number of energy converting devices: ηtotal = ηsteam gen. ηturbine ηel.gen. …  In 
other words, the total or overall efficiency of a power plant is actually the ratio of net electrical power output to the 
rate of fuel energy input. 
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In modern designs of supercritical units, the thermal capacity was upgraded to 1200 MW (unit 
manufactured at “ТКЗ”: ТГМП-1204 (1978), “steam” generating capacity of 3950 t/h (Ornatskiy 
et al. 1980).  This, one of the largest in the world, supercritical power-generating unit operates 
with a single-shaft turbine at the Kostroma district power plant and is a gas-oil-fired “steam” 
generator (Belyakov 1995). 
 
Over the last 25 years, more than 200 supercritical units were manufactured and put into 
operation in Russia (Smith 1999).  Supercritical “steam” generators manufactured in Russia are 
listed in Table 2.1 and 2.2. 
 
Table 2.1. Supercritical “steam” generators manufactured in Russia (Belyakov 1995). 
 

Capacity, 
MW 

Manufacturer Total 
“ ТКЗ” (Taganrog) “ ЗиО” (Podol’sk) 

gas-oil coal gas-oil coal 
300 91 49 19 36 195 
500 – – – 16 16 
800 17 2 – 1 20 

1200 1 – – – 1 
In all 109 51 19 53 – 

160 72 232 
 
Figure 2.1 shows modern single-reheat-cycle 600-MWel Tom’-Usinsk (Russia) thermal power 
plant layout. 
 
Table 2.2. Parameters of largest Russian SC turbines (Grigor’ev and Zorin, 1982). 
 

Parameters K-1200-240 K-800-240 K-800-240 

Power, MWel (max power) 1200 (1380) 800 (850) 800 (835) 
Main Steam 

Pressure, MPa 23.5 23.5 23.5 
Temperature, °C 540 540 560 
Max Flow Rate Through HP Turbine, t/h 3950 2650 2500 

Reheat Steam 
Pressure, MPa 3.5 3.2 3.4 
Temperature, °C 540 540 565 
No. of Steam Extractions 9 8 8 
Outlet Pressure, kPa 3.6 3.4 2.9 

Cooling Water 
Temperature, °C 12 12 12 
Flow Rate, m3/h 108,000 73,000 85,000 
Feedwater Temperature, °C 274 274 270 

Turbine Layout 
No. of Cylinders 5 5 6 
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No. of HP Cylinders 1 1 - 
No. of IP Cylinders 2 2 - 
No. of LP Cylinders 2 2 - 

Turbine Mass and Dimensions 
Total Mass, t 1900 1300 1600 
Total Length, m 48 40 40 
Total Length with Electrical Generator, m 72 60 46 
Average Diameter of HP Turbine, m 3.0 2.5 2.5 

Turbine Specific Performance 
Specific Heat Rate, kJ/kW·h 7660 7720 7590 



 
Figure 2.1. Single-reheat-cycle 600-MWel Tom’-Usinsk thermal power plant (Russia) thermal layout (Kruglikov et al., 2009): 

Cyl – Cylinder; H – Heat exchanger (feedwater heater); CP – Circulation Pump; TDr – Turbine Drive; Cond P – Condensate 

Pump; GCHP – Gas Cooler of High Pressure; and GCLP – Gas Cooler of Low Pressure. 



2.2.2. US Supercritical-Pressure Units 
 
In the early 1950s, the development work on supercritical “steam” generators started in the USA 
(Lee and Haller 1974).  The first supercritical “steam” generator was put into operation at the 
Philo Plant of American Electric Power in 1957.  The capacity of this unit was 120 MW with 
“steam” parameters of 31 MPa and 620/566/538ºC (main/reheat/reheat) (Retzlaff and Ruegger 
1996). 
 
Later on, supercritical power-plant “steam” generators in the USA were developed, 
manufactured and put into operation with a “steam” generating capacity of 500 MW (1961) 
(Ornatskiy et al. 1980). 
 
In the early sixties, another plant was built with ultra-supercritical “steam” parameters (pressure 
of 30 MPa, temperatures (primary and reheat) of 650ºC) (Smith 1999). 
 
Major USA manufacturers of power-plant “steam” generators such as Babcock & Wilcox, 
Combustion Engineering, Inc., Foster Wheeler, and others were involved in the development and 
manufacturing of the supercritical units.  The supercritical units found their application at 
thermal capacities from 400 to 1380 MW.  Often the subcritical units for 1000 MW and higher 
were replaced with supercritical “steam” generators in the USA (Ornatskiy et al. 1980). 
 
US power “steam”-generating units have the following averaged characteristics (Ornatskiy et al. 
1980): 

• “Steam” capacity, t/h 1110–4440 
• Pressure (primary “steam”), MPa 23–26 
• Temperature (primary “steam”), ºC 538–543 
• Temperature (secondary steam), ºC 537–551 

 
The characteristics of two supercritical units built by “Babcock & Wilcox” are listed below 
(Ornatskiy et al. 1980). 
 
Power-plant “steam” generator put into operation at the “Paradise” power plant (USA) in 1969 
(for 1130 MW unit): 

• “Steam” capacity, t/h 3630 
• Pressure (primary “steam”), MPa 24.2 
• Temperature (primary “steam”), ºC 537 
• Steam capacity (secondary steam), t/h 2430 
• Pressure (secondary steam), MPa 3.65 
• Temperature (secondary steam), ºC 537 
• Feed-water temperature, ºC 288 
• Thermal efficiency, % 89 

 
Power-plant “steam” generators put into operation at the “Emos” (1973) and “Gevin” (1974 – 
1975) power plants (USA) (for 1130 MW units): 

• “steam” capacity, t/h 4438 
• Pressure (primary “steam”), MPa 27.3 
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• Temperature (primary “steam”), ºC 543 
• Steam capacity (secondary steam), t/h 3612 
• Pressure (secondary steam), MPa 4.7 
• Temperature (secondary steam), ºC 538 
• Feed-water temperature, ºC 291 
• Thermal efficiency, % 93 

 
The largest supercritical units are rated up to 1300 MW with “steam” parameters of 25.2 MPa 
and 538ºC (Lee and Haller 1974). 
 
2.2.3. Recent Developments in Supercritical “Steam” Generators/Turbines around the 

World 
 
Recently supercritical power-plant “steam” generators are working around the world with a wide 
range of “steam” parameters (see Table 2.3). 
 
Table 2.3. Characteristics of modern supercritical “steam” generators (Smith 1999). 

 

Country “Steam” parameters 
Capacity Primary Reheat Feed water 

t/h p, MPa t, ºC p, MPa t, ºC t, ºC 
China – 25 538 – 566 – 
Denmark – 30 580 7.5 600 320 
Germany 2420 26.8 547 5.2 562 270 
Japan* 350–1000 24.1 538 – 566 – 

25 600 – 610 300 
31.1 566 – 566 – 

* updated with recent data. 
 
On average, the usage of supercritical “steam” generators instead of subcritical ones increased 
overall power plant efficiency from 45% to about 50% (Smith 1999). 
 
In Japan, the first supercritical “steam” generator (600 MW) was commissioned in 1967 at the 
Anegasaki plant (Oka and Koshizuka 2002; Tsao and Gorzegno 1981).  Nowadays, many power 
plants are equipped with supercritical “steam” generators and turbines.  Hitachi operating 
supercritical pressure “steam” turbines have the following average parameters (see also Table 
2.4): output – 350 (1 unit), 450 (2 units), 500 (3 units), 600 (11 units), 700 (4 units) and 
1000 MW (4 units), “steam” pressure about 24.1 MPa (one unit 24.5 MPa), “steam” temperature 
(main/reheat) – 538/566ºC (the latest units 600/600ºC (610°C)). 
 
In Germany, at the end of the nineties construction was started on Unit “K” of RWE Energie’s 
Niederauβem lignite-burning power station near Cologne (Heitmüller et al. 1999).  This power 
plant is described as the most advanced lignite-fired power plant in the world with 45.2% 
planned thermal efficiency.  At a later date, with new dry lignite technology introduced, a further 
increase in efficiency of 3 – 5% is expected.  The new Unit “K” will have the following 
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parameters: output of about 1000 MW and “steam” conditions of 27.5 MPa and 580/600ºC 
(main/reheat). 
 
In Denmark (Noer and Kjaer 1998), the first supercritical power plant started operation in 1984, 
and today a total of seven supercritical units are in operation.  Main parameters of these units are: 
output – 2 units 250 MW, the rest 350 – 390 MW, “steam” pressure 24.5 – 25 MPa, “steam” 
temperature 545 – 560ºC, reheat temperature 540 – 560ºC, feed-water temperature 260 – 280ºC 
and net efficiency 42 – 43.5%.  Main parameters of ultra-supercritical units: “steam” pressure 29 
– 30 MPa, “steam” temperature 580ºC, steam reheat temperature 580 – 600ºC, feed-water 
temperature 300 – 310ºC and net efficiency 49 – 53%. 

 

So-called “Ultra-supercritical boilers” are now being researched and deployed world wide, 
particularly in Japan, Korea and China.  Using double steam reheat and advanced high 
temperature blade materials, the turbine inlet temperature is being extended to 625°C at pressures 
of up to 34 MPa, with overall efficiencies then approaching 51 – 53%. 

 

Table 2.4. Major parameters of selected Hitachi SC plants (turbines). 
 

First Year 
of Operation 

Power Rating 
MW el 

Pressure 
MPa(g) 

Tmain/Treheat 
°C 

2011 495 24.1 566/566 

2010 
809 25.4 579/579 
790 26.8 600/600 

2009 

1000 25.0 600/620 
1000 25.5 566/566 
677 25.5 566/566 
600 24.1 600/620 

2008 

1000 24.9 600/600 
887 24.1 566/593 
887 24.1 566/593 
677 25.5 566/566 

2007 
1000 24.9 600/600 
870 25.3 566/593 

2006 600 24.1 566/566 
2005 495 24.1 566/566 
2004 700 24.1 538/566 
2003 1000 24.5 600/600 
2002 700 25.0 600/600 
1998 1000 24.5 600/600 
1994 1000 24.1 538/566 
1992 700 24.1 538/566 
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First Year 
of Operation 

Power Rating 
MW el 

Pressure 
MPa(g) 

Tmain/Treheat 
°C 

1991 600 24.1 538/566 

1989 
1000 24.1 538/566 
700 24.1 538/566 

1985 &1984 600 24.1 538/566 

1983 
700 24.1 538/538 
600 24.1 538/566 
350 24.1 538/566 

1981 500 24.1 538/538 
1979 600 24.1 538/566 

1977 
1000 24.1 538/566 
600 24.1 538/566 
600 24.1 538/552/566* 

1975 450 24.1 538/566 

1974 
500 24.1 538/566 
500 24.1 538/538 

1973 
600 24.1 538/552/566* 
450 24.1 538/566 

1972 & 1971 600 24.1 538/566 
*Double-reheat-cycle turbines. 
 
An analysis of SC-turbine data (Naidin et al., 2009) based on the current review and materials 
presented by Pioro and Duffey (2007) showed that: 
• The vast majority of the modern and upcoming SC turbines are single-reheat-cycle 

turbines; 
• Major “steam” inlet parameters of these turbines are: 

The main or primary SC “steam” – P = 24 – 25 MPa and T = 540 – 600°C; and the reheat 

or secondary subcritical-pressure steam – P = 3 – 5 MPa and T = 540 – 620°C. 
• Usually, the main “steam” and reheat-steam temperatures are the same or very close (for 

example, 566/566°C; 579/579°C; 600/600°C; 566/593°C; 600/620°C). 
• Only very few double-reheat-cycle turbines were manufactured so far.  The market 

demand for double-reheat turbines disappeared due to economic reasons after the first 
few units were built. 
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PART 3. SUPERCRITICAL WATER-COOLED NUCLEAR-REACTOR 
CONCEPTS: REVIEW AND STATUS 
 
3.1. GENERAL CONSIDERATIONS 
 
Concepts of nuclear reactors cooled with water at supercritical pressure were studied as early as 
the 1950s and 1960s in the USA and former USSR (Oka 2000; Wright and Patterson 1966; 
Bishop et al. 1962; Skvortsov and Feinberg 1961; Marchaterre and Petrick 1960; Supercritical 
pressure power reactor 1959).  The main characteristics of the first concepts of SCWRs are listed 
in Table 3.1. 
 
Table 3.1. First concepts of nuclear reactors cooled with supercritical water (Oka 2002; 
2000). 
 

Parameters Company / reactor acronym (year) 
Westinghouse GE, Hanford B & W 

SCR 
(1957) 

SCOTT-R 
(1962) 

SCR 
(1959) 

SCFBR 
(1967) 

Reactor type Thermal Thermal Thermal Fast 
Pressure, MPa 27.6 24.1 37.9 25.3 
Power, MW (thermal/electrical) 70/21.2 2300/1010 300/– 2326/980 
Thermal efficiency, % 30.3 43.5 ~40 42.2 
Coolant temperature at outlet, ºC 538 566 621 538 
Primary coolant flow rate, kg/s 195 979 850 538 
Core height / diameter, m/m 1.52/1.06 6.1/9.0 3.97/4.58 – 
Fuel material UO2 UO2 UO2 MOX 
Cladding material SS SS Inconel-X SS 
Rod diameter / pitch, mm/mm 7.62/8.38 – – – 
Moderator H2O Graphite D2O – 
Explanations to the table: 
Acronyms: GE – General Electric; B & W – Babcock & Wilcox; SCR – SuperCritical Reactor; SCOTT-R – 
SuperCritical Once-Through Tube reactor; and SCFBR – SuperCritical Fast Breeder Reactor. 
 
After a 30-year interval, the idea of developing nuclear reactors cooled with supercritical water 
became attractive as the ultimate development path for water-cooling.  Several countries 
(Canada, Germany, Japan, Korea, Russia, USA and others) have started R&D work in that 
direction.  However, none of these concepts is expected to be implemented in practice before 
2015 – 2020. 
 
The main objectives of using supercritical water in nuclear reactors are: 

1) Increase the efficiency of modern nuclear power plants (NPPs) from 30 – 35% to about 45 
– 50%; and 

2) Decrease capital and operational costs and hence decrease electrical energy costs. 
 
Supercritical water NPPs will have much higher operating parameters (see Figure 3.1: pressure 
about 25 MPa and outlet temperature up to 625ºC) compared to those of modern NPPs’, and a 
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simplified flow circuit (see Figure 3.2), in which steam generators, steam dryers, steam 
separators, etc., can be reduced or eliminated.  Also, higher supercritical water temperatures 
allow direct thermo-chemical or indirect electrolysis production of hydrogen at low cost, due to 
increased process efficiencies2.  According to the IAEA (1999), the optimum required 
temperature is about 850ºC and the minimum required temperature is around 650 to 700ºC, well 
within modern materials capability. 

 
Figure 3.1. Pressure-temperature diagram of water with typical operating conditions of 
SCWRs, PWRs, CANDU-6 reactors and BWRs. 

 

Also, future nuclear reactors will have high indexes of fuel usage in terms of thermal output per 
mass of fuel (Kirillov 2000; Alekseev et al. 1989).  Therefore, changing over to supercritical 
pressures increases the thermal output coefficient and decreases the consumption of natural 
resources of uranium.  Due to the considerable reduction in water density in the reactor core, it 
might be possible to develop fast SCWRs with a breeding factor of more than one for converting 
fertile (non-fissionable fuel) to fissionable isotopes in a self-sustaining fuel cycle. 
 
3.2. DESIGN CONSIDERATIONS 

 

                                                 
2 IAEA TECDOC-1584 "Advanced Applications of Water Cooled NPPs" has information on hydrogen production 
with high-temperature electrolysis as well as other processes using 500°C heat. 
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The design of SCWRs is seen as the natural and ultimate evolution of today’s conventional 
water-cooled nuclear reactors. 

• First, some designs of the modern Pressurized Water Reactors (PWRs) operate at pressures 
of 15 − 16 MPa. 

• Second, some Boiling Water Reactors (BWRs) are the once-through or direct-cycle design, 
i.e., steam from a nuclear reactor is forwarded directly into a turbine. 

• Third, some experimental reactors used nuclear steam reheat with outlet steam 
temperatures well beyond the critical temperature, but at pressures below the critical 
pressure (DOE USA 2005; Grigor’yants et al. 1979; Baturov et al. 1978; Samoilov et al. 
1976; Aleshchenkov et al. 1971; Dollezhal’ et al. 1974, 1971, 1958; Kornbichler 1964; 
Margen 1961; Spalaris et al. 1961; Wallin et al. 1961).  And 

• Fourth, modern supercritical turbines, at pressures of about 25 MPa and inlet temperatures 
of about 600ºC, operate successfully at thermal coal-fired power plants for many years. 

 
The SCWR concepts therefore follow two main types, the use of either (a) a large reactor 
pressure vessel (Figures 3.2 and 3.3) (Buongiorno and MacDonald 2003) with wall thickness of 
about 0.5 m to contain the reactor core (fuelled) heat source, analogous to conventional PWRs 
and BWRs, or (b) distributed pressure tubes or channels analogous to conventional CANDU®3 
and RBMK nuclear reactors (Duffey et al. 2006, 2005, 2003; Duffey and Pioro 2006, 2005a,b, 
2004; Khartabil et al. 2005; Torgerson et al. 2005; Gabaraev et al. 2005, 2004, 2003a,b; 
Kuznetsov and Gabaraev 2004). 
 
The pressure-vessel SCWR design is developed largely in the USA, EU, Japan (Oka et al. 2010), 
Korea and China and allows using a traditional high-pressure circuit layout. 
 
The pressure-channel SCWR design is developed largely in Canada (Figure 3.4) and in Russia 
(Figure 3.5) to avoid a thick wall vessel, and allows, in principle, the following key features for 
safety and performance: 

a) Passive accident and decay heat removal by radiation and convection from the distributed 
channels even with no active cooling and no fuel melting.  Thus, the system is potentially 
inherently safe. 

b) Use of multi-pass reactor flows, so that reheat and superheat are possible while still 
keeping the pressure tube cool.  Thus, the system can produce process heat on demand.  
Reactor size (and thermal power) can be adjusted from 300 MWe to 1400 MWe depending 
on the customer site, financing and product mix application. 

                                                 
3  CANDU® (CANada Deuterium Uranium) is a registered trademark of Atomic Energy of Canada Limited (AECL). 
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Figure 3.2. Schematics of US pressure-vessel SCWR (courtesy of Professor J. Buongiorno 
(MIT) (Buongiorno and MacDonald 2003)). 

 

 

(a) (b) 
Figure 3.3. Cross-sectional view of US SCWR pressure vessel (a) and reference US 
SCWR fuel assembly with water rods (b) (courtesy of Professor J. Buongiorno (MIT) 
(Buongiorno and MacDonald 2003)). 
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Figure 3.4. General scheme of pressure-channel SCW CANDU reactor (courtesy of 
Dr. R. Duffey (AECL)): IP – intermediate-pressure turbine and LP – low-pressure turbine. 
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Figure 3.5. Layout of RDIPE pressure-channel nuclear reactor (Duffey et al. 2006; 
Gabaraev et al. 2005): 1) & 2) foundation and bearing plates, respectively; 3) reactor shaft; 
4) calandria tank; 5) top plate; 6) coolant pipes; 7) technological channel; 8) top cover; 9) & 
10) inlet and outlet collectors, respectively; 11) thin-wall sealing casing; 12) lateral 
shielding tank; and 13) supports. 
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The system features together set the fuel design, the channel power, the core lattice pitch, the 
enrichment, and the flow circuit parameters, where the coolant is usually water.  A thermal 
neutron spectrum is used with either a solid moderator using graphite or zirconium hydride, or a 
liquid using heavy water moderator. 
 
To reduce the severe axial flux tilt due to the large density decrease as the coolant is heated, the 
core flow path can be a re-entrant in the vessel option, coming down unheated first and then 
turning into an upflow; or interlaced or re-entrant in channels with flow in opposite directions.  
Both options allow the chance to reduce pressure boundary temperatures, by partly insulating the 
pressure-retaining vessel of the channel wall using the first pass of the unheated flow.  Typical 
outlet temperatures are expected to be up to near 600ºC to match supercritical turbine inlet needs.  
There is also the option of a superheat pass (return flow) to further raise outlet temperatures if 
needed (for example, for hydrogen production). 
 
The limit on supercritical water outlet temperature is effectively set by the fuel cladding, since 
the peak clad temperature will be some 20% higher than the average, and the corrosion rates 
much higher.  Hence, the thermal limits depend on the wall heat transfer, and estimates of the 
peak values have been made to establish the margins and clad lifetime expected before 
refuelling. 
 
Moreover, one of the unique features of the SCWRs is the very low coolant mass-flow rates that 
are required through the reactor core because of the high thermal capacity.  Preliminary 
calculations showed that the rate could be about five to eight times less than in modern PWRs, 
significantly reducing the pumping power and costs.  This improvement is due to the 
considerable increase in the specific enthalpy at supercritical conditions, of about 2000 kJ/kg. 
 
Therefore, tightly packed cylindrical fuel bundles, which are more acceptable in SCWRs than in 
other types of reactors, can be used.  These tight bundles have a significant pressure drop, which 
in turn can enhance the hydraulic stability of the flow.  Since the supercritical water is a single-
phase “gas”, then the cladding surfaces can and should be finned or ridged to enhance turbulence 
levels to increase the HTC.  This is already done for Advanced Gas-cooled Reactors (AGRs) 
today, and hence will increase the heat transfer and reduce peak cladding temperatures in normal 
operation. 
 
To optimize thermal efficiency and capital cost, there are also options for the thermal cycles 
(Spinks et al. 2002; Bushby et al. 2000a,b; Oka et al. 1996), with either a direct cycle into a 
supercritical turbine or an indirect using a heat exchanger.  Analyses by Spinks et al. (2002) 
show a cost reduction of 15% or more for the direct-cycle option, without use of the process 
heat. 
 
One advantage of separating the moderator and coolant in the pressure-channel design is that the 
moderator can act as a backup heat sink in the event when emergency core cooling is not 
available.  The advanced fuel-channel design (Khartabil et al. 2005) combined with a passive-
moderator cooling system (Khartabil 1998) results in a design where severe core damage is 
practically eliminated.  In this design, the passive-moderator loop operates continuously to 
remove heat deposited in the moderator during normal operation.  The moderator heat during 
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normal operation is comparable to decay heat following reactor shutdown; therefore, the 
moderator can also be used to remove decay heat following postulated accidents. 
 
In summary, the use of supercritical water in nuclear reactors will, according to the US DOE 
(Roadmap) Generation IV4 Nuclear Energy Systems Report (2001): 

• Significantly increase thermal efficiency from 33 – 35% up to 40 – 45%; 
• Eliminate steam generators, steam separators, steam dryers and re-circulation pumps; 
• Allow the production of hydrogen due to high coolant outlet temperatures; 
• Decrease reactor coolant pumping power; 
• Reduce frictional losses; 
• Lower containment loadings; and 
• Eliminate dryout. 

 
The latest concepts of SCWRs are summarized in Table 3.2.  Figure 3.2 shows the schematic of 
the US pressurized-vessel SCWR, Figure 3.4 – the general concept of the pressurized-channel 
SCW CANDU nuclear reactor and Figure 3.5 – the general scheme of the RDIPE pressurized-
channel SCWR. 
 
Specific features of SCWRs (see Table 3.2) being developed: 

• in Canada are listed in Duffey et al. 2006, 2005, 2003; Duffey and Pioro 2006, 2005a,b, 
2004; Khartabil et al. 2005; Torgerson et al. 2005; Spinks et al. 2002; Bushby et al. 
2000a,b; Khartabil 1998; 

• in Europe are described in Hofmeister et al. (2005), Mori et al. (2005), Waata et al. (2005), 
Marsault et al. (2004); Starflinger et al. (2004), Aksan et al. (2003), Bittermann et al. 
(2003a,b), Cheng et al. (2003), Rimpault et al. (2003) and Squarer et al (2003a,b); 

• in Japan can be found in the book by Oka et al. (2010) and papers by Kamei et al. (2005), 
Kitou and Ishii (2005); Ookawa et al. (2005), Yamada and Oka (2005), Yang et al., (2005), 
Yamaji et al. (2005a-d, 2004, 2003a-d), Yi et al. (2005a,b; 2004a-c, 2003), Yoo et al. 
(2005), Ishiwatari et al. (2004, 2003a-e, 2002, 2001), Oka and Yamada (2004), Tanabe et 
al. (2004), Kataoka et al. (2003), Koshizuka et al. (2003), Oka et al. (2003a-d, 2002, 2000, 
1996, 1995a,b, 1994a,b, 1993, 1992a,b), Shioiri et al. (2003), Cheng et al. (2002), Oka 
(2003, 2002, 2000), Kitoh et al. (2001, 1999), Nakatsuka et al. (2001, 2000, 1998), 
Koshizuka and Oka (2000, 1998), Mukohara et al. (2000a,b, 1999), Oka and Koshizuka 
(2000, 1998, 1993), Lee et al. (1999, 1998), Kitoh et al. (1998), Dobashi et al. (1998a,b, 
1997), Jevremovich et al. (1996, 1994, 1993a,b), Okano et al. (1996a,b, 1994), Oka and 
Kataoka (1992) and Kataoka and Oka (1991); 

• in Korea – in Joo et al. (2005) and Bae et al. (2004); 
• in Russia – in Gabaraev et al. 2005, 2004, 2003a,b; Kuznetsov and Gabaraev 2004; and 
• in the USA – Buongiorno et al. (2006, 2003), MacDonald et al. (2005), Modro (2005), 

Yang and Zavaljevski (2005), Zhao et al. (2005), Fischer et al. (2004), Buongiorno (2004, 
2003), Buongiorno and MacDonald (2003a,b,c), Davis et al. (2003). 

 
Typical values of the HTC and wall temperatures at SCWR operating conditions are presented in 
the nesxt section. 
                                                 
4 On progress of the Generation IV nuclear energy systems, see Sagayama (2005). 
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Table 3.2. Modern concepts of nuclear reactors cooled with supercritical water. 
 
Parameters Unit SCW 

CANDU 
HPLWR SCLWR-

H 
SCFBR-H SCWR B-500 

SKDI 
ChUWR ChUWFR KP-SKD 

Reference – Bushby et 
al. 2000; 
Khartabil 
et al. 2005 

Squarer et 
al. 2003 

Yamaji et 
al. 2004 

Oka, 
Koshizuka 

2000 

Bae et al. 
2004; Bae 

2004 

Silin et al. 
1993 

Kuznetsov 
2004 

(project 
from 80s) 

Gabaraev et 
al. 2003a,b; 

2004 

Gabaraev et 
al. 2005 

Country – Canada EU/Japan Japan Korea Russia Russia Russia Russia 
Organization – AECL EU / U of 

Tokyo 
University of Tokyo KAERI / 

Seoul NU 
Kurchatov 
Institute 

RDIPE 
(НИКИЭТ) 

Reactor type 
     Spectrum 

– PT RPV RPV RPV RPV RPV PT PT PT 
– Thermal Thermal Thermal Fast Thermal Thermal Thermal Fast Thermal 

Power thermal 
electrical 
linear max/ave 

MW 2540 2188 2740 3893 3846 1350 2730 2800 1960 
MW 1140 1000 1217 1728 1700 515 1200 1200 850 

kW/m  39/24 39/18 39 39/19  38/27  69/34.5 
Thermal eff. % 45 44 44.4 44.4 44 38.1 44 43 (48) 42 
Pressure MPa 25 25 25 25 25 23.5 24.5 25 25 
Tin coolant ºC 350 280 280 280 280 355 270 400 270 
Tout coolant ºC 625 500 530 526 508 380 545 550 545 
Flow rate kg/s 1320 1160 1342 1694 1862 2675 1020  922 
Core height 
     Diameter 

m 
m 

 
~4 

4.2 4.2 
3.68 

3.2 
3.28 

3.6 
3.8 

4.2 
2.61 

6 
11.8 

3.5 
11.4 

5 
6.45 

Fuel – UO2/Th UO2 or 
MOX 

UO2 MOX UO2 UO2 UCG MOX UO2 

Enrichment % wt. 4 <6% ~6.1  5.8 3.5 4.4  6 
Cladding material – Ni alloy SS Ni alloy Ni alloy SS Zr alloy / 

SS 
SS SS SS 

# of FA  300 121 121 419 157 121 1693 1585 653 
# of FR in FA  43 216/252 300  284 252 10 18 18 
Drod/δw 
Pitch 

mm/mm 
mm 

11.5 and 
13.5 

8 
9.5 

10.2/0.63 12.8 
 

9.5/0.635 
11.5 

9.1 (Zr), 8.5 
(SS) 

12/1 12.8 10/1 

Tmax cladding ºC <850 620 650 620 620 425 630 650 700 
Moderator – D2O H2O H2O H2O ZrH2 H2O Graphite – D2O 

Explanations to the table: 
Concepts appear according to the alphabetical order of the country of origin. 
ChUWR –Channel-type Uranium-graphite Water Reactor with annular-type elements cooled from inside; ChUWFR – Channel-type Uranium-graphite Water 
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Fast Reactor; FA – fuel assembly; FR – fuel rod; HPLWR – High Performance Light Water Reactor; KP-SKD – Channel Reactor of Supercritical Pressure (in 
Russian abbreviations); PT – Pressure Tube (reactor); PVWR – Pressure-Vessel Water reactor; RPV – Reactor Pressure Vessel; SCFBR-H – SuperCritical Fast 
Breeder Reactor with High temperature; SCLWR-H – SuperCritical Light Water Reactor with High temperature; Seoul NU – Seoul National University; SKDI – 
SuperCritical Pressure Integral (reactor) (in Russian abbreviations); TBD – To Be Determined; UCG – Uranium Carbide Grit; U of Tokyo – University of 
Tokyo; VNIIAM – All-Union Scientific-Research Institute of Atomic Machine Building (in Russian abbreviations); WWPR-SCP – Water-Water Power Reactor 
(“VVER” in Russian abbreviations) of SuperCritical Pressure. 
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Continuation of Table 3.2. 
 

Parameters Unit PVWR WWPR-SCP SCWR-US 
Reference – Filippov 

et al. 2003 
Baranaev et 

al. 2004 
Buongiorno, 
MacDonald 

2003 
Country – Russia Russia USA 
Organization – VNIIAM / 

Kurchatov 
Institute 

IPPE 
(ФЭИ) 

INEEL 

Reactor type 
     spectrum 

– RPV RPV RPV 
– Thermal Fast Thermal 

Power thermal 
          electrical 
linear max/ave 

MW 3500 3830 3575 
MW 1500 1700 1600 

kW/m  35/15.8 39/19.2 
Thermal eff. % 43 44 44.8 
Pressure MPa 25 25 25 
Tin coolant ºC 280 280 280 
Tout coolant ºC 550–610 530 500 
Flow rate kg/s 1600 1860 1843 
Core height 
     diameter 

m 
m 

3.5 
2.92 

4.05 
3.38 

4.87 
3.91 

Fuel – UO2 MOX UO2 95% 
Enrichment % wt.   5 
Cladding 
material 

–  Ni alloy TBD 

# of FA  37 241 145 
# of FR in FA   252 300 
Drod/δw 
Pitch 

mm/mm 
mm 

Sphere 1.8 
mm 

10.7/0.55 
12 

10.2/0.63 
11.2 

Tmax cladding ºC 630–730 630  
Moderator – H2O ZrH1.7 H2O 
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3.3 SUPERCRITICAL WATER-COOLED CANDU NUCLEAR-REACTOR CONCEPT 

 

The SCW CANDU nuclear reactor is a pressurized-channel type reactor (Torgerson et al. 2005; 
Spinks et al. 2002).  The general concept of an SCW CANDU reactor is shown in Figures 3.4 
and 3.6.  Supercritical water (dense fluid) at a temperature of about 350ºC (inlet temperature is 
below the pseudocritical temperature of 384.9ºC) from a circulation pump enters the reactor core 
and heats up caused by the heat of fission to 625ºC (outlet temperature is above the 
pseudocritical temperature of 384.9ºC) at a pressure of about 25 MPa, which is above the critical 
pressure of 22.1 MPa.  After that, supercritical water is directed to a turbine to perform useful 
work and returns back through the cooler to the circulation pump.  Due to high operating 
parameters, the coolant in the second circuit may be used for a heat supply or be directed to 
intermediate or low-pressure turbines. 

 

High pressures and temperatures inside the reactor core require a new design of the fuel channel 
(Duffey et al. 2003). 

 

 
 

Figure 3.6. Generic channel layout of a 1200-MWel PT SCWR. 
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Figure 3.7. 3-D view of high efficiency fuel channel (based on AECL design). 
 
The insulated pressure tube (Figure 3.7) is a key technology that is needed to make use of 
supercritical water in channel-type reactors feasible (however, other options such as a solid 
moderator using graphite or zirconium hydride are possible).  In this design, the pressure tube is 
insulated from the coolant by using an internal layer of low-neutron absorbing material.  
Furthermore, an internally insulated pressure tube operates at much lower temperatures (close to 
the moderator temperature) than in current reactors, which means that any increase in pressure-
tube thickness, if any, is negligible. 
 
Like the commercialization of High-Temperature Reactors (HTRs), Very High-Temperature 
Reactors (VHTRs) and SCWRs themselves, direct application of heat from HTRs to produce 
hydrogen is not an immediate prospect.  In the near term, electrolysis can gradually supplement 
first-generation production by Steam-Methane-Reforming (SMR) process (CH4 + 2·H2O = 4·H2 
+ CO2) with the electricity produced in low-cost Generation III+ reactors such as the ACR™ 
(Advanced CANDU Reactor) at other than periods of peak electrical demand.  Economic 
assessments show this is competitive with the SMR process for large-scale, industrial production 
of hydrogen as well as for dispersed, smaller-scale production. 
 
Since so-called high-temperature electrolysis using solid oxide fuel cells (SOFCs) seems to have 
advantages in efficiency at higher temperatures, at say around 750°C and above, a possibility 
was examined of adding steam superheat channels to the SCWR concept to give even higher 
outlet temperatures. 
 
This is relatively simple in principle, and has been demonstrated in practice at the Russian 
Beloyarsk NPP, named by I.V. Kurchatov (Grigor’yants et al. 1979; Baturov et al. 1978; 
Samoilov et al. 1976; Aleshchenkov et al. 1971; Dollezhal’ et al. 1974, 1971, 1958).  In these 
170 – 500 MWe power reactors of the Beloyarsk NPP, the superheat channels were supplied as a 
second pass with the exit steam from the first pass through the reactor core, to give an average 
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outlet temperature of about 500°C at a pressure of about 7 to 8 MPa.  Operation of these reactors 
with these superheat channels was reported as entirely satisfactory, once some initial 
manufacturing issues had been resolved. 
 
The chosen reactor exit temperature can be increased by either extending the channel length, or 
having one or more additional passes through the core.  Superheat channels are then located at 
the periphery of the reactor core and have about 1.5 times lower heat flux compared to the 
average heat flux.  For the SCWR superheat version of the SCW CANDU reactor, the following 
option was examined: the use of steam discharged from the HP turbine outline, reheated and then 
introduced at 6 MPa and 395°C into the superheat channels (Figure 3.8). 
 
Since these superheat channels are now at a much lower (highly subcritical) pressure near 
standard steam conditions, re-entrant flow or stainless steel can be used for the pressure tubes for 
these superheat channels.  In addition, a degree of the superheat can be chosen and varied 
together with the mass-flow fraction that is superheated, as the steam demand may vary. 
 

 
 

Figure 3.8: Single-reheat cycle for SCW NPP. 
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3.3.SOME DESIGN FEATURES OF RDIPE PRESSURE-CHANNEL SCWR 

 

The current concept of a direct-flow pressure-channel reactor operating at supercritical pressures 
(KP-SKD) with vertical channels (Gabaraev et al. 2005) (Figure 3.5 and Table 3.1) possesses all 
advantages of current pressure-channel reactors.  This reactor is a thermal-spectrum type, 
because of the special features of the channel design eliminating the closely-spaced lattice of fuel 
elements in the core.  Therefore, it cannot be tailored to a fast neutron spectrum.   
 
It has been shown (Gabaraev et al. 2003) that a fast pressure-channel reactor with a gaseous 
medium instead of the moderator does not possess an efficient fuel cycle because of the 
extremely high neutron leakage and low fuel-breeding ratio.  Consequently, the proposed 
concept aims at thermal reactors also with a heavy-water moderator, which gives an acceptable 
neutron balance and deep fuel burn-up.  The required temperature 80 – 90°C is easily achieved 
for such moderator because of the possibility of circulation and external cooling.  A graphite 
moderator is not considered due to the difficulty of achieving the required cooling of the 
structure at supercritical operating conditions. 
 
Neutron-physical characteristics and economic indicators of KP-SKD have been investigated for 
two types of fuel elements and channels: 

• A channel containing a pressure-carrying zirconium channel tube (placed in a calandria 
zirconium tube), a steel screen casing, and RBMK-type fuel assemblies; fuel – uranium 
dioxide pellets or cermet – micro-particles of uranium dioxide in a metallic matrix; fuel 
element coating – heat-resistant steel (Figure 3.9);  And 

• A channel containing an assembly of tubular (annular) AMB-type fuel elements, likewise 
placed in a calandria tube; fuel – cermet; the outer coating and a central-pressure carrying 
fuel-element tube are made of heat-resistant steel (Figure 3.10). 

 
The first type of channel design was developed with nuclear superheating of steam (Dollezhal’ 
and Emel’yanov 1980).  Here, the channel tube is protected from heating by a casing (in contrast 
to the Canadian concept, which uses a layer of thermal insulation).  This design has been 
successfully tested as a steam-superheating channel in the No. 2 unit at the Beloyarskaya NPP. 
 
In the first design (Figure 3.9), coolant with density of 0.78 g/cm3 and temperature of 275°C is 
fed into the channel from below into a gap between the steel casing and the channel tube and 
rises upward, cooling the tube.  In the top of the channel, the coolant flow with a temperature of 
360°C and a density of 0.61 g/cm3 turns into the space between the fuel elements, and is heated, 
on average, up to 550°C at the core exit.  The maximum wall temperature is about 620°C. 
 
In the second design (Figure 3.10), the coolant flows into the channel from above into the 
downflow central tube of each fuel element and the downflow (interior) tube of the central tube 
of the channel.  At the bottom of the channel coolant with temperature 380°C and density 0.43 
g/cm3 turns and enters the ring-shaped gap of the rising branch, cooling directly the interior wall 
of the fuel element and having the same water parameters at the exit – 550°C and density of 0.08 
g/cm3.  And the maximum wall temperature is about 600°C. 
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Figure 3.9. Cross section of fuel channel with 18-rod fuel elements (Duffey et al. 2006; 
Gabaraev et al. 2005): 1) thin-wall 60 × 1 mm separating casing; 2) 10 × 1 mm fuel element 
cladding; 3) fuel element; 4) 78 × 6 mm channel tube; and 5) 90 × 3 mm calandria tube. 
 

 
Figure 3.10. Cross section of fuel channel with 18-annular fuel elements (Duffey et al. 2006; 
Gabaraev et al. 2005): l) 107 × 3 mm calandria tube; 2) 19 × 0.3 mm outer cladding of a 
fuel element; 3) 12 × 1.2 mm pressure-carrying fuel-element tube; 4) 70 × 0.2 mm 
separating tube; 5) 20 × 2 mm pressure-carrying central tube of a fuel assembly; and 6) 13 
× 0.3 mm separating tube. 

 
To implement this technology, the fuel elements differ from those with the conventional ceramic 
fuel as follows. 
 

The prototype of the second type of channel is a nominal steam-superheating channel used in the 
reactors in the first phase of the Beloyarskaya NPP (Samoilov et al. 1982).  This design was 
found to be reliable for prolonged operation with temperatures close to those of KP-SKD.  It was 
possible to increase the steam temperature at the exit from a group of such channels up to 560 – 
565°C and to operate a channel successfully up to average burn-up of 43 – 44 MW·days/kg.  

 

3.4. Heat-Transfer Optimization 
 
It is known that the HTC from a fuel element to a gaseous coolant (supercritical water is 
considered physically as a dense gas) is lower than in subcritical water-cooled nuclear reactors 

1

2

3

4

5

6
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(Hewitt and Collier 2000) (for details, see Table 3.3) for the same velocity.  Hence the fuel 
centerline temperature will be higher in a SCWR than in a subcritical water-cooled nuclear 
reactor. 

 
Table 3.3. Typical values of HTC (normal heat-transfer regime) for reactor coolants within 
operating ranges. 
 

Reference 
Reactor 
coolant 

Heat-transfer 
cooling conditions 

Typical geometry HTC range 
(kW/m2K) 

Hewitt and 
Collier 2000 

Subcritical 
water 

Forced convection Fuel bundles 30 
Flow boiling 60 

Subcritical 
CO2 

Forced convection 1 

Yamagata et 
al. 1972 

SCW* Forced convection: 
G = 1,120 kg/m2s 

Inside circular tube (10 mm 
ID) 

10–15 

Dyadyakin 
and Popov 
1977 
(correlation) 

SCW Forced convection: 
G = 860 kg/m2s 

7-element helically finned 
bundle model (correlation 
used for Dhy≈8 mm) 

4 

Pioro and 
Khartabil 
2005 

Supercritical 
CO2 

Forced convection: 
G =    900 kg/m2s 
G = 2000 kg/m2s 

Inside circular tube (8 mm 
ID) 

 
2–3 
3–4 

 
Using simple logic, the wall temperature would be too high after allowance for hot spots and 
flow distribution uncertainties.  However, if high temperature cladding and enhanced heat-
transfer surfaces are used in bundles, then the wall temperature is well within safety limits.  The 
objective is simply to increase the supercritical water turbulence level and inter-channel mixing 
in the bundles.  Evidence for the efficiency of bundles is available.  It is important to implement 
these special design features directed to decreasing the fuel centreline temperature and hence the 
centreline fuel temperature within values allowed by safety limits.  These features can be: 

• Manufacturing fins on the external surface of fuel-element cladding (Hewitt and Collier 
2000, Dyadyakin and Popov 1977).  In Magnox gas-cooled nuclear reactors, fuel elements 
equipped with the herringbone pattern of fins with splitters (Hewitt and Collier 2000) were 
used.  This design feature works as a heat-transfer enhancing device by mixing the gas and 
as a developed heat-transfer surface (finned surface); hence, the total heat transfer rate was 
increased by up to 5 – 6 times compared to that of a plain surface. 

• Manufacturing ribs on the external surface of fuel element cladding (Figure 3.11) (Hewitt 
and Collier 2000).  In AGRs, fuel elements are machined to produce rectangular ribs of a 
relatively small height.  This design feature works mainly as a heat-transfer enhancing 
device by mixing of the gas.  The HTC was increased by up to 2.5 times compared to that 
of a plain surface.  And 

• Using hollow fuel pellets installed inside annular-type elements with internal or internal 
and external cooling (Figure 3.12) (Dement’ev 1990; Dollezhal’ et al. 1971; Aleshchenkov 
et al. 1971; Kornbichler 1964; Spalaris et al. 1961). 
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Figure 3.11. AGR ribbed 
fuel element (Hewitt and 
Collier 2000). 

Figure 3.12. Closed-end annular-type fuel element with 
internal and external cooling (Dement’ev 1990): Scheme 
and heat flux/temperature profiles along heated length. 

 
Therefore, in spite of some technical difficulties, there are definitely proven ways to overcome 
them.  The supercritical water and other supercritical fluid literature show that enhancements of 
2 to 5 times are possible using ribs, grids and “turbulizers” (for details on the heat-transfer 
enhancement at supercritical pressures, see Chapter 9).  Therefore the supercritical water bundle 
HTC is expected to be between ~ 4 – 20 kW/m2K (see Table 3.4). 
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Table 3.4. Comparison of values of thermophysical properties of water* and values of HTC for conditions of SCW CANDU 
reactor, CANDU-6 reactor and PWR. 
 

Parameter Unit SCW CANDU Typical CANDU-6 PWR 
Pressure MPa 25** 10.5 15 
Location – Inlet Outlet Inlet Outlet Inlet Outlet 
Temperature ºC 350 625 265 310 290 325 
Increase in temperature from inlet to outlet ºC 275 45 35 
Density kg/m3 625.5 67.58 782.9 692.4 745.4 664.9 
Enthalpy kJ/kg 1624 3567 1159 1401 1285 1486 
Increase in enthalpy from inlet to outlet kJ/kg 1943 242 201 

kJ/kg·K 7.06 5.38 5.74 

Specific heat J/kg·K 6978 2880 4956 6038 5257 6460 
Expansivity 1/K 5.17·10–3 1.74·10–3 2.09·10–3 3.71·10–3 2.54·10–3 4.36·10–3 
Thermal conductivity W/m·K 0.481 0.107 0.611 0.530 0.580 0.508 
Dynamic viscosity Pa·s 7.28·10–5 3.55·10–5 10.12·10–5 8.24·10–5 9.23·10–5 7.81·10–5 
Kinematic viscosity m2/s 11.63·10–8 52.47·10–8 12.93·10–8 11.90·10–8 12.38·10–8 11.75·10–8 
Diffusivity m2/s 11.02·10–8 54.72·10–8 15.75·10–8 12.68·10–8 14.80·10–8 11.83·10–8 
Surface tension N/m – – 22.5·10–3 0.0121 16.7·10–3 8.77·10–3 
Prandtl number – 1.06 0.96 0.82 0.94 0.84 0.99 
Reynolds number (×106) at G***=860 kg/m2s and 
Dhy=8 mm 

– 0.946 1.940 0.680 0.835 0.745 0.881 

Nusselt number**** (=0.023·Re0.8·Pr0.4)           (3.1) – 1418 2425 985 1225 1068 1308 
HTC W/m2K 8527 3228 7522 8114 7744 8303 
* All thermophysical properties of water were calculated according to NIST (2002). 
** Pseudocritical temperature at pressure of 25 MPa is 384.9ºC. 
*** This value of mass flux corresponds to SCW CANDU reactor operating conditions.  Mass flux values in subcritical pressure nuclear reactors are much 
higher; therefore, values of Reynolds number, Nusselt number and HTC will be also much higher in subcritical pressure reactors. 
**** Nusselt number is calculated according to Equation (3.1) (Dittus and Boelter 1930) for forced convective heat transfer in a circular tube as a first estimate 
only. 
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SYMBOLS AND ABBREVIATIONS 

 

A area, m2 

cp specific heat at constant pressure, J/kg K 

D inside diameter, m 

G mass flux, kg/m2s; 














flA

m
 

g gravitational acceleration, m/s2 

H specific enthalpy, J/kg 

h heat transfer coefficient, W/m2K 

k thermal conductivity, W/m K 

L heated length, m 

m mass-flow rate, kg/s; ( )Vρ  

P, p pressure, MPa 

Q power or heat-transfer rate, W 

q heat flux, W/m2; 








hA

Q
 

T temperature, K 

t temperature, ºC 
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Greek Letters 

α thermal diffusivity, m2/s; 














ρpc

k
 

µ dynamic viscosity, Pa s 

ρ density, kg/m3 

υ kinematic viscosity, m2/s 

Non-dimensional Numbers 

Nu Nusselt number; 








k

Dh
 

Pr Prandtl number; 






=








α
υµ

k

c p
 

Re Reynolds number; 








µ
DG

 

Subscripts or superscripts 

ave average 

cr critical 

e electrical 

h heated 

in inlet 

int internal 

iso isothermal 

ℓ liquid or local 

m molar 

pc pseudocritical 
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Abbreviations and acronyms widely used in the text and list of references 

ACR Advanced CANDU Reactor 

AECL Atomic Energy of Canada Limited (Canada) 

AGR Advanced Gas-cooled Reactor 

BWR Boiling Water Reactor 

CANDU CANada Deuterium Uranium nuclear reactor 

DHT Deteriorated Heat Transfer 

DOE Department Of Energy (USA) 

HP High Pressure 

HT Heat Transfer 

HTC Heat Transfer Coefficient 

HTR High Temperature Reactor 

IAEA International Atomic Energy Agency (Vienna, Austria) 

ICONE International Conference On Nuclear Engineering 

IHT Improved Heat Transfer 

IP Intermediate-Pressure (turbine) 

KP-SKD Channel Reactor of Supercritical Pressure (in Russian abbreviations) 

LP Low Pressure (turbine) 

MIT Massachusetts Institute of Technology (Cambridge, MA, USA) 

MOX Mixed Oxide (nuclear fuel) 

NIST National Institute of Standards and Technology (USA) 

NPP Nuclear Power Plant 

PT Pressure Tube 

PWR Pressurized Water Reactor 
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RBMK Reactor of Large Capacity Channel type (in Russian abbreviations) 

R&D Research and Development 

RDIPE Research and Development Institute of Power Engineering (Moscow, Russia) 

(NIKIET in Russian abbreviations) 

SCW SuperCritical Water 

SCWR SuperCritical Water-cooled Reactor 

SMR Steam-Methane-Reforming (process) 

SOFC Solid Oxide Fuel Cell 

UOIT University of Ontario Institute of Technology 

US or USA United States of America 

USSR Union of Soviet Socialist Republics 

VHTR Very High-Temperature Reactor 
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