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Inhomogeneous magnetic field (most typically, a dipole magnetic field) gives rise to various in-
teresting properties of plasmas which are degenerate in homogeneous (or zero) magnetic fields.
Here we show that a rotating vortex with a steep density gradient (and very high beta value) is self-
organized in the vicinity of a magnetic dipole. Its nontrivial structure (heterogeneity) yet maximizes
the entropy on a relevant phase space that is a macroscopic leaf of scale hierarchy; we formulate the
foliation by a Casimir invariant that is created by separating (quantizing) a microscopic action-angle
variables. The Casimir invariant (action) measures the number of quasi-particles, and the corre-
sponding chemical potential yields density clump in response to the heterogeneity of the energy level

(frequency).

PACS numbers: 52.25.Dg, 05.20.Dd, 45.20.Jj, 52.35.We

Self-organization of a structure is, at its surface, an an-
tithesis of the entropy ansatz. However, disorder can still
develop at microscopic scale while a structure emerges
on some macroscopic scale; it seems more common in
various nonlinear systems that order and disorder are si-
multaneous [1], and such co-existence may be possible if
the self-organization and the entropy principle [2] work
on different scales. Therefore we have to write a theory
of self-organization as a discourse on scale hierarchy [3].

Scale hierarchy is a popular keyword in various argu-
ments on “structures”; a biological body is a typical ex-
ample in which an evident hierarchical structure is pro-
grammed to establish, enabling effective consumption of
energy and materials as well as emission of entropy and
wasts. But the theory of a physical macro-system —
a collective system of “simple” elements, like a gravita-
tional system or a plasma— hinges on a different frame-
work; a scale hierarchy is not “programed” to emerge, or
structures are not subject to some functions; yet one can
observe a more fundamental and elementary process of
creation in nonlinear dynamics.

Here we study the self-organization of a magneto-
spheric plasma vortex [4]. By this analysis, we delineate a
clear and distinct scale hierarchy in terms of Hamiltonian
mechanics and foliation, and show how a structure (het-
erogeneity) can emerge while maximizing the entropy.

I. LABORATORY MAGNETOSPHERE RT-1

Magnetospheres are self-organized structures found
commonly in the Universe. A dipole magnetic field sets
the stage for charged particles to cause a variety of inter-
esting phenomena. To explore the basic physics of plasma
in a strongly inhomogeneous dipole magnetic field, we
have constructed the RT-1 device[5, 6], on which we
have demonstrated stable confinement of a very high
beta (8 &~ 1) hot electron (7. > 10 keV) plasma with
a long confinement time (g ~ 0.5 s)[7]. This sys-
tem (most common in nature, but new in laboratories)

will have wide applications in confining various single-
or multi-species charged particles (for example, highly
charged ions, antimatter, or possibly high-temperature
fusion plasmas) in a compact space [8-19].

Here we describe the observation of “inward diffusion”
of particles resulting in the “spontaneous confinement.”

A. Laboratory Magnetosphere

The RT-1 device levitates a superconducting (high-
Tc superconductor Bi-2223) ring magnet in a vacuum
chamber and produces a magnetospheric configuration
(Fig.1) [20]. The field strength in the confinement re-
gion varies from 0.3 T to 0.03 T. The conductor is first
cooled to 20 K in the maintenance chamber (located at
the bottom of the plasma chamber), and, then, charged
to 0.25 MA (the coil consists of 12 pancakes and has a
total of 2160 turns). After detaching the current leads
and coolant (He gas) transfer tubes, the ring is moved
up to the mid-plane of the plasma chamber and is then
levitated by a feedback-controlled magnet installed on
the top of the device. Three-cord laser sensors measure
the position of the levitated ring. The super-conducting
operation can continue for 7 hours before the coil tem-
perature increases to 30 K. Current decay is less than 1%
after 7 hours.

The plasma is produced by injecting X-mode mi-
crowaves (8.2 GHz maximum 25 kW, and 2.45 GHz max-
imum 20 kW). Direct heating of ions by ICH is under
development.

B. Inward Diffusion

So-called inward diffusion (or up-hill diffusion) of mag-
netized particles, often observed in planetary magne-
tospheres [21-23], is the objective of the present study.
Laboratory magnetic dipole systems simulate similar be-
havior of particles [17-19].
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FIG. 1: The RT-1 magnetospheric plasma system. (a) A
dipole magnetic field is produced by the levitating super-
conducting ring magnet. The magnetic field lines (contours of
the flux function 1) and the field-strength contours are shown.
The field strength in the confinement region varies from 0.5 T
to 0.01T. (b) The magnetic surface is visualized by injecting
electrons into hydrogen gas at a pressure P, = 1 x 1072 Pa
from an electron gun located at » =0.70 m on the mid-plane,
producing weakly ionized plasma.

A very clear evidence of inward diffusion is observed
by producing a pure electron plasma. A single-species
plasma has a strong internal electric field. Confinement
is possible only if the electric field (F) is balanced by an
induction (v x B) generated by a vortical motion (v) in
the magnetic field (B). The flow and the electromagnetic
field achieve stable coupling by self-organizing a vortex
[24-27]: Galaxies are close cousins, in which rotation
creates a balance between gravitational and centrifugal
forces.

Figure2 shows the typical formation process. Soon
after the start of injection (injection point r =0.8m,
injection energy eVaee = 175eV, beam current
@Iyeam ~ 300 1A), a charged cloud is created, which repels
the beam and diminishes the current to about 107 A; see
Fig.2 (a). Figure2 (b) shows the electrostatic fluctuation
measured by a wall probe (a small piece of metallic plate
facing the plasma), and Fig.2(c) shows its frequency
spectrum. The initial turbulent phase, in which the fluc-
tuation reaches around 50% of the ambient electric field,
quenches after about 0.05s. As we show below, the tur-
bulence drives particles inward. While the beam current
is supplied, the fluctuation is rather strong and has a
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FIG. 2: The formation and sustainment of a magnetospheric
electron plasma: (a) The acceleration voltage Vicc and the
beam current Iheam of the electron gun. (b) The electrostatic
fluctuation measured by a wall probe. (c¢) The evolution of
the frequency spectrum of the fluctuation. (d) In the driven
phase, the fluctuation has a broad spectrum (¢t = 0.1s). In
the confined phase, the small-amplitude fluctuation has a co-
herent peaked spectrum (t = 1s).

complex spectrum. When the beam current is stopped
(t=0.325s), the plasma becomes turbulent and then re-
laxes into a quiescent state, in which the fluctuation level
is less than 1%; through the transient turbulent phase,
the driven state re-organizes into the confined state. By
“triangulation,” using an array of wall probes, we can
estimate the location of the charged clump [28]. Elec-
trons in the outer region (intersecting the electron gun
and its mechanical support) are lost immediately after
the beam is stopped. The remaining particles (typically
1078 C which amounts to about 40 % of the total parti-
cles in the driven phase) move slowly inward and reside
in a stronger field region. The quiescent phase continues
for more than 300s.

In Figs.2 (c) and (d), we find a remarkable difference
between the driven and confined states. In the confined
state, the frequency spectrum is sharply localized around
10kHz and its higher harmonics. The oscillations are
highly coherent and propagate in the toroidal direction;
the mode number of the dominant component is 1.

We observe a clear evidence of inward diffusion: the
particles are pushed further and create an inward den-
sity gradient. The driver of the turbulence, Kelvin-
Helmholtz (KH) instability, is active as long as the rota-
tion has a shear, so a turbulence-free quiescent state is
realized only in a rigidly rotating vortex. If KH insta-
bility tends to self-organize a relazed state and stabilize
itself, turbulence-induced diffusion will cast the charge
distribution into a specific profile that rotates rigidly;
this does in fact happen, as we observe in the experi-
ment, and the relaxed state turns out to be not flat. The
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FIG. 3: The radial profile of the space potential ¢s measured
by an emissive Langmuir probe. Two different gun positions
are compared (circles: rgu, =80cm, triangles: rgu, =70cm).
Electrons penetrate into the inner region (r <rgun), where
—e@s > Vace. The probe measurement can be performed only
in the driven phase, because insertion of the probe damages
the confinement.

angular frequency w, the flux function v, and the elec-
tric potential ¢ are related by w = V¢/V. For w to be
homogeneous, the density n of the charged particles (by
Poisson’s equation, n o« V2?¢) must have a profile such
that n o< B[29]. The strength B of a dipole magnetic
field is strongly inhomogeneous, so the density of the re-
laxed state must have a steep inward gradient. This is in
marked contrast to the homogeneous-density equilibrium
of a Penning-Malmberg trap, which also rotates rigidly
in a homogeneous magnetic field [26].

Interestingly, these two different equilibria are unified
because the factor B, which dominates the density distri-
bution, is the Jacobian weight for the map from the ac-
tion u = E | /w, to the perpendicular energy £, =muv? /2
(we=eB/m, v, : perpendicular velocity with respect
to the magnetic field). If the velocity distribution is
a function of the action p (instead of the energy E |,
as predicted by the adiabatic invariance theorem), the
velocity-space integral dv? /2 operates as (w./m)du to
yield the laboratory-frame density n, including the Jaco-
bian w. < B8, 30].

In a frame moving with the E x B drift velocity, the
electric field vanishes, so particles are seemingly subject
to no force. Hence, it might be thought that the density
will become homogeneous. Indeed, it does so if B is ho-
mogeneous. However, particles are subject to magnetic
force, and the equilibrium selects a different quantity, the
particle number per unit magnetic flux tube, to homog-
enize [30, 31].

Because the action p, which dictates the distorted
phase space in which the distribution homogenizes, must
be constant, particles are accelerated as they diffuse to-
ward the larger-B region (so-called betatron accelera-
tion). In fact, by probing the charged cloud with an emis-
sive Langmuir probe, we find that the space potential is
higher than the initial energy imparted to the electrons
by the gun, so the particles must be accelerated to climb
the potential hill. The energy can be supplied by the

turbulent electric field that drives the diffusion. Figure3
shows the space potentials (¢s) measured at two differ-
ent positions of the electron gun (rgun =80 and 70 cm).
In both cases, the potential energy —e¢s at the position
of the electron gun agrees with the gun’s acceleration
voltage Viacc =500V, implying that the magnetosphere
is fully charged. In the inner region (r < rgun), —egs
increases beyond V.., clearly showing inward diffusion.

II. SEPARATION OF ACTION-ANGLE
VARIABLES AND SCALE HIERARCHY

The inward diffusion and self-organization of a density
clump near the dipole is the subject of present study. The
inward diffusion is driven by some spontaneous fluctua-
tions (symmetry breaking) that violates the constancy
the the angular momentum; in a strong enough, sym-
metric magnetic field, the canonical angular momentum
Py is dominated by the charge ¢ multiple of the flux func-
tion ¢ (Gauss’ potential of the magnetic field), thus the
conservation of Py = qi constrains the charged parti-
cle on a magnetic surface (level-set of ). Perturbed
by a random-phase fluctuations, particles can diffuse
across magnetic surfaces. Although the “diffusion” is
normally a process of diminishing gradients, numerical
experiments do exhibit preferential inward shifts through
random motions of test particles[32, 33]. Detailed spec-
ification of the fluctuations or the microscopic motion of
particles is not the subject of present discussion. The
aim of this work is to construct a clear-cut description of
the self-organized state, the goal of the diffusion in which
the density has a steep gradient, but is consistent with
the entropy principle.

We describe the scale hierarchy by a phase-space foli-
ation, and explain the self-organization (creation of het-
erogeneity) by a distortion of the metric (invariant mea-
sure) dictating the “equipartition” —the Jacobian on the
leaf of the macroscopic hierarchy measures the distortion.
In a strongly inhomogeneous magnetic field (typically a
dipole magnetic field), the phase-space metric of magne-
tized particles is distorted, producing reciprocal inhomo-
geneity in the laboratory-fame flat space; even if particles
distribute homogeneously on some relevant phase space,
its projection onto the laboratory frame yields peaked
profile by the multiplication of the inhomogeneous Jaco-
bian weight [34] (this idea was proposed in the pioneering
work of A. Hasegawa [8, 31]; a comparison of the present
theory will be given in the latter discussion). We will em-
body this scenario by invoking a Hamiltonian formalism
of the magnetized charged particles and the Boltzmann
distribution on a foliated phase space endowed with a
non-canonical Poisson bracket [35].



A. Hamiltonian of charged particle

To analyze the effect of magnetization in an inhomo-
geneous magnetic field (specifically, a dipole magnetic
field), we invoke the hierarchical Hamiltonian structure
built by adiabatic invariants (actions). The Hamiltonian
of a charged particle is a sum of the kinetic energy and
the potential energy:

H = 20 + 9, (1)
where v := (P — qA)/m is the velocity, P is the canoni-
cal momentum, (¢, A) is the electromagnetic 4-potential,
m is the mass, and ¢ is the charge. In the present work,
we may treat electrons and ions equally (in the latter dis-
cussions, we will neglect ¢ assuming charge neutrality).
Denoting by v and v, the parallel and perpendicular
(with respect to the local magnetic field) components of
the velocity, we may write

m m
H = gvi + 5vﬁ + q¢. (2)

We will also denote p := mw, p := mv), and p, :=
muv,.

B. Creation of an action-angle pair by
magnetization

In a strong magnetic field, v, can be decomposed
into a small-scale cyclotron motion v. and a macroscopic
guiding-center drift motion v4. The periodic cyclotron
motion v, can be quantized to write (m/2)v? = pw.(x)
in terms of the magnetic moment u and the cyclotron
frequency w.(x); p (adiabatic invariant) and 9. := w.t
(the gyration phase) constitute an action-angle pair. In
the standard interpretation, in analog of quantum the-
ory, w. is the energy level, and p is the “number” of
quasi-particles (quantized periodic motions) in the cor-
responding energy level.

We consider an axisymmetric system with a poloidal
magnetic field (no toroidal magnetic field): Let (v, (,0)
be a magnetic coordinate system such that B = V¢ x V8
(@ is the toroidal angle in which the system is as-
sumed to be homogeneous) and B = V¢ = BV( [36].
The macroscopic part of the perpendicular kinetic en-
ergy can be written as mv3/2 = (Py — qb)*/(2mr?),
where vy is the drift velocity, Py is the angular mo-
mentum in the azimuthal direction and r is the radius
from the geometric axis. The canonical variables are
z = (e, 11,¢,p),0, Pp) [37]. The Hamiltonian is now

LB 1,
He = pwe + om 2 T Pt a0, (3)
which describes the motion of the guiding center (or, the
quasi-particle). Note that the energy of the cyclotron mo-
tion has been quantized in term of the frequency w.(x)
and the action p; the gyro-phase 9. has been coarse

grained (integrated to yield 27).

C. Boltzmann distribution

The standard Boltzmann distribution function is de-
rived when we assume that the Lebesgue measure d*vd>z
is an invariant measure and the Hamiltonian H is the de-
terminant of the ensemble; maximizing the entropy

S = —/flogfd3vd3:n (4)

under the constraints on the total energy
E = /Hfd%d%: (5)
and the total particle number N = [ fd*vd®z, we obtain

fla,v) =27 e "M, (6)

where Z is the normalization factor (log Z — 1 is the La-
grange multiplier on N) and (3 is the inverse tempera-
ture (the Lagrange multiplier on E). The corresponding
configuration-space density is

plx) = / v oc e P9, (1)

which becomes homogeneous if the charge neutrality con-
dition applies (¢ = 0).

Needless to say, the Boltzmann distribution or the cor-
responding configuration-space density, with an appro-
priate Jacobian multiplication [34], is independent of the
choice of coordinates on the phase space. Moreover, the
density is invariant no matter whether we quantize the
cyclotron morion or not. Let us confirm this fact by
direct calculation. The Boltzmann distribution of the
quantized plasma is

flu,va, o) = 27 e e
— Z*le—ﬁ(p,wc(m)+mv§/2+mvﬁ/2+q¢(m))- (8)

The density is given by

p(x) = /fd% - /f%dﬂdvddvu e 71, (9)

which reproduces (7).

D. Equilibrium on macroscopic hierarchy

Now we formulate the scale hierarchy as a foliation of
the phase space. The adiabatic invariance of the mag-
netic moment p (or, the number of the quantized quasi-
particles) poses a topological constraint on the motion of
particles; it is this constraint that determines a macro-
scopic hierarchy and creates a structure there. To explain
how the scale hierarchy is formulated, we start by the



general (micro-macro total) formulation, and then sepa-
rate the microscopic action-angle pair p-9.; the macro-
scopic phase space is the remaining sub-manifold im-
mersed in the general phase space, which we delineate
as a leaf of foliation in terms of a Casimir element [35].

The Poisson bracket on the total phase space, span by
the canonical variables z = (¢, u; (,p|; 6, Ps), is defined
as

{F,G} :=(J0.F,0,G),

where (u,v) := [u/v;d®z is the inner-product and J is
the canonical symplectic matrix (Poisson tensor):

700
0Jo0 |, J::<_01(1)>. (10)
00 J

Given the Hamiltonian H., the equation of motion is
written as dz’ /dt = {H,.,z’}. Notice that the quantiza-
tion of the cyclotron motion has suppressed the change of
. Liouville’s theorem determines the invariant measure
d®z, by which we obtain the Boltzmann distribution (8).

To define the macroscopic hierarchy, we “separate” the
microscopic variables (J., 1) by modifying the symplectic
matrix as

o O O
oGO
GO O

The Poisson bracket, determining the kinematics on
the macroscopic hierarchy, is defined as {F,G},. :=
(Tne0=F,0-G). The macroscopic kinetic equation reads
as Ouf + {Hc, f}ne = 0, which reproduces the familiar
drift-kinetic equation (see for example [38]).

The nullity of J,,. makes the Poisson bracket {, }n.
non-canonical [35], i.e., there is a non-trivial C(z) such
that {G,C}ne = 0 for every G. We call C(z) a Casimir
element (since {H.,C} = 0, C is an invariant). Evi-
dently, p is a Casimir element (more generally, we may
put C' = g(u) with any smooth function g). The level-set
of C(z) = p, a leaf of the Casimir foliation, identifies
what we call the macroscopic hierarchy.

By Liouville’s theorem applying to the Poisson bracket
{, }ne, the invariant measure on the macroscopic hierar-
chy is d*z = d%z/(2ndp), the modulo by the microscopic
measure of the total phase-space measure. The most
probable state (statistical equilibrium) on the macro-
scopic ensemble must maximize the entropy with respect
to this invariant measure. We can perform the variational
principle by the standard recipe of Lagrange multiplier
—immersing the macroscopic hierarchy into the general
phase space, and applying the constraint with a Lagrange
multiplier: we maximize entropy S = — [ flog f d®z for
a given particle number N = [ fd®z, a quasi-particle
number M = [ pfdSz, and an energy E = [ H.fd%z, to
obtain a distribution function

[ = o= 27 e BHtem), (12)

where «a, § and log Z — 1 are, respectively the Lagrange
multipliers on M, E, and N. Evidently, {H., f}n. = 0,
i.e., this f is a stationary solution of the macroscopic ki-
netic equation. Giving grand-canonical interpretation for
this distribution function, we may read « as the chemical
potential of the quasi-particle [39].

The factor e~ “* in f, yields a direct w. dependence of
the configuration-space density:

we(x)

Bwe(x) + a’ (13)

27we
p= /fa e d,u,d'Udd'UH X
m

which is compared with the density (9) evaluated for the
Boltzmann distribution (here we put ¢ = 0 assuming
charge neutrality). Notice that the Jacobian (2mw./m)du
multiplies on the macroscopic measure d*z, reflecting the
distortion of the macroscopic phase space (Casimir leaf)
due to the magnetic field. Figure4-(A) shows the density
distribution and the magnetic field lines.

E. Macro-scale action-angle pairs in an
axisymmetric system

In an axisymmetric system, the quasi-particle motion
is periodic in both the parallel and 6 directions, creating
macroscopic action-angle pairs: Jy-) (:= sin’l(C/KH);
¢ is the bounce orbit length) and Py (~ qi/)-0 (for a hi-
erarchy of adiabatic invariants, see [40] and papers cited
there). To give explicit expressions, we invoke the Hamil-
tonian H, of the form of (3). Here we neglect the curva-
ture effect [41]. We also neglect ¢ assuming charge neu-
trality. Then, the equation of the parallel motion reads
as

a _om. _n
dt ap” T m’
(14)
dpy  O0H.
W~ e T VIR

(A)

FIG. 4: Density distribution (contours) and the magnetic field
lines (level-sets of ¢) in the neighborhood of a point dipole.
(A) The equilibrium distribution on the leaf of u-foliation. (B)
The equilibrium distribution on the leaf of ;1 and .J)-foliation.



which combine to yield

d2
We approximate

we = Qe(¥) + U ($)¢?/2

on each magnetic surface (level-set of 1), where Q.(¢)
is the w, evaluated at ( = 0 (which is the minimum of
w. on each magnetic surface), and Q7 (¢) := d*w./d(?|y.
We will denote

Ly () := /2Q:(¢) /¥ (),

which scales the variation of w,. along (. Integrating (15),
we obtain the parallel periodic motion ¢ = £ sin 9, ¥ =
wpt with the bounce frequency

MW _ vy
m Ly(y)’

Wp = (16)

and bounce amplitude ¢ = |/2E) /(mw}), where

EH = (m’l}ﬁ)/2|4:0.

Assuming F)| ~ E| := ufl., we estimate {| ~ L. Defin-

ing
1
JH = % mv”dC,

we may write B} = Jjws, and d’U” = (wb/mvu)dt]” =
Vws/2mJdJ. Using the relation wy/(mv))
vy /(Lymv)) = 1/(mL)), we may also write dv
(1/mLy)dJy.

By quantizing the parallel action-angle pair J)-9|, we
may consider a further constrained equilibrium distribu-
tion function:

Q

fan =2 e PHarET ), (17)

which yields

2rwedp  dJ)
i

/00 (BWC+“)”du
m2 0 By 2wep/m +yLy(¢)

Through Lj(¢), the density p has a dependence on 4.
We may estimate Lj(¢) ~ ¢~'. Numerical integration
of (18) gives a density profile as shown in Fig. 4-(B).

Finally, we solve the equation of motion in the az-
imuthal (@) direction, and show that the self-organized
clump of density is a “vortex”. Averaging the cyclotron
and bounce motions, the Hamiltonian becomes (neglect-
ing ¢ and approximating Py =~ q»)

H, = UWC('(p: C) + J\|wb(¢7u)' (19)

(18)

The governing equation of the canonical pair qi-6 is

i _ OHy anc J|| Oowy, "
at’ ~ dqy) qop  qop "

(20)
d,_ . OH,

We thus find that a particle rotates with a frequency wy.

III. CONCLUDING REMARKS

We have derived a grand-canonical distribution func-
tion fo (or fo,) on a macroscopic phase space that
is separated from the microscopic action-angle variables
(the action, then, reads as the number of the quasi-
particles abstracting the microscopic variables). In em-
bedding the macroscopic leaf into the laboratory-frame
flat phase space, a Jacobian weight multiplies to yield an
inhomogeneous density profile. Evidently, fo (or fa,)
is a particular solution of the stationary kinetic equa-
tion {H., f}ne = 0. A general solution, freed from the
maximum-entropy condition, may be written as f =
F(H.,p,Jy). Especially f = F(u,.J)) yields a density
such that p oc w./L, which, in a dipole magnetic field,
scales as oc r~%; this the density profile given by A.
Hasegawa[8, 31], and is the asymptotic form of (18) in
the limit r — oo (w. — 0).

We end this lecture with comparing the chosen exam-
ple of self-organization and the familiar narrative based
on the integral fluid invariants like a helicity [42, 43]. The
helicity is a Casimir element of the fluid/magneto-fluid
equation (Appendix), and the “Taylor relaxed state” (or
the Beltrami field such that V x B = AB) is the mini-
mum energy state on the “helicity leaf” immersed in an
infinite-dimensional function space. We can construct a
grand canonical distribution of (second-quantized) Bel-
trami fields (the Beltrami parameter A is the chemical
potential) [44].

Appendix (Hamiltonian form of MHD)

An ideal MHD plasma endowed with a Hamiltonian

e [ 0] e

and a non-canonical symplectic operator

0 -V 0
J(u) := (—V —n"H(V x V)x n_l(VXo)XB>.
0 Vx[oxn B 0

The state vector is w := !(n,V,B), which is normal-
ized in the standard Alfvén units (n is the density, V'
is the fluid velocity, B is the magnetic field, and e(n) is
the thermal energy density; here we assume a barotropic



relation (9[ne(n)]/On = h(n) is the molar enthalpy, and
nVh = Vpis the pressure force). We assume that Q C R?
is a smoothly bounded domain, and the vector fields V
and B are confined in (), i.e., we impose boundary con-
ditions (denoting by m the unit normal vector onto the
boundary 02) n -V =0 and n- B = 0. When Q is
multiply connected, these boundary conditions are not
sufficient to determine a unique solution, and we have to
fix the flux.

The MHD equation is written in a Hamiltonian form

Ou = J(u)0uH(u), (21)

which is evidently equivalent to the well-known system
of equations:

On = -V -(Vn),
OV =—(V-V)V+n7'[(Vx B) x B-Vp|,
B =V x (V x B).

The operator 7 (u) has three independent Casimir el-
ements

Ci(u) := /Qn d*z. (22)
Cy(u) == [ V-B d*, (23)
Q
Cs(u) := % A- B d*x, (24)
Q

The equation of motion (21) is invariant against the
transformation H(u) — H,(u) = H(u) — > u;C;(u)

(each p; is a constant number); we have an equivalent
representation of the equation of motion:

Ou = J(u)0uH,u(u). (25)

The transformed Hamiltonian H,(u) is called an energy-
Casimir functional. The Beltrami field is an equilibrium
point of the energy-Casimir functional, i.e. the solution
of

3
Ou | H(w) = > p;C(u) | =0, (26)

which reads as

V2/24 b= =0, (27)
nV — uB =0, (28)
VXxB—pusB—uVxV=0, (29)

In deriving (29), we have operated curl. The “Taylor
relaxed state” is given by putting V = 0 and n = 1
(or choosing only C3 to define the energy-Casimir func-
tional). See also[45] for a generalization to hall MHD
system, in which much more nontrivial structures stem
from richer Casimir elements associated with the non-
canolicality of the symplectic operator.
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