

2292-5

School and Conference on Analytical and Computational Astrophysics

14 - 25 November - 2011

Dynamics of the Solar Wind

William H. Matthaeus University of Delaware, Bartol Research Institute, Newark USA

[Bill's Spectral HHds Notes, Dartmouth?]

Basic Props of Spectral HHds A: Approx to a fin by LSQ 1. x-din Hilbert space rep 2. rep with fuite # basisfis (In 1, orthog) (just lin 1) 4. completeress & connection with usa approx 5. Origin of of the o-norm basis sets [self-adjoint and order diff operator -rate of cycle. Er Sturn-Liouville Hoory 6 Fowner Series 7. Chebychov series. B: Types of Spectral MHds. 1. Galerhu 2. Coloration 3. Tau. C. Advan/Disadu -lack of phase errors; algebraic diff, but exact (limbed); exp cycigl D. Simple Examples ut + ux = 0, periodic exact sol, Galerha, Colloration, FD NExter well-hardled if resolved, 721 hdiss ~ [2(02+j1)] 14 VR

E. Eval of NL Terms

1. Convolution

2. Aliasiz

CONTENTS

3. Elimuating aliasing errors

SIMULATION of TURBULENCE (HHD) 亚

Theory MHD

Spectral Egrs (Galerhe / -spec in 30 MHD)

C, 2D periodic MHD

Conserv laws is ideal HHD ひ,

Rugged hariants Rugged thraviants incl3 estimates of kdiss
HHD turb & accuracy of spectral codes

Acc & Slab of time-when schenes

Conserv of RI L collocation codes H

II A 2DMHD turb code & ras

or ~ Eforcy 2-3/4 or ~ ko R 3/4

A: dealine?

B: 3D issues

C: aliasing notals, etc.

References.

$$\frac{2}{3}A_{e} \left(f^{-}f_{N}, f^{-}f_{N}\right) = 0 \quad \left[\begin{array}{c} and & \frac{2}{3}A_{e} \left(f^{-}f_{N}, f^{-}f_{N}\right) = 0 \end{array}\right]$$

$$\frac{2}{3}A_{e} \left(\begin{array}{c} f^{+}f_{N} + \frac{1}{3}A_{n} + \frac{1}{3}A_{n}$$

Seek the least squares approximation that minimizes
$ F - \sum_{n=0}^{N-1} B_n Y_n ^2 = F - f_N ^2$
Use a different approach here because we have linear independence to use, but Not orthogonality.
A CONDITION on the solution: Consider an arbitrary series, distract from for, & Cn4n
Trivially, $\leq c_n + c_n - f = \leq (c_n - B_n) + c_n + f_n - f$
and $ Z C_n 4 n - f ^2 = Z (C_n - B_n) 4 n ^2 + f_w - f ^2$
+2 (ECn-Bn)4n, fn-f)
suppose the residual for-f is onthosmal to every to. Then it is also orthogonal to E (n-Bn) 4n.
the renainder is son of Two positive terms, this
$1/2C_n 4n - F / \geq f_N - F ^2$
therefore f_N is the best (least square) solution) provided that $(f_N - f_N, \psi_N) = 0$ $\forall N$
But This is simply the statement that
$(\xi_n B_n Y_n - f, Y_e) = \xi_n B_n (Y_n, Y_e) - (f, Y_e) = 0$
There are the Normal equations, a matrix problem.
$\begin{pmatrix} (4_{i_1}4_1) & & & \\ & \ddots & & \\ & & & \end{pmatrix} \begin{pmatrix} g_0 \\ \vdots \\ g_{i_1} \end{pmatrix} = \begin{pmatrix} (\xi, 4_0) \\ \vdots \\ (\xi, 4_{n-1}) \end{pmatrix}$
if (4, 40) = Inp it reduces to the previous result

the solutions to the normal equations exists and is varque!
$\sum_{n} (4m, 4e) B_n = (f, 4e), l = 0, 1, N-1$
the matrix problem has a solution whiless the honogeneous
problem has a solution. The homogeneous problem w
2 (4m, 4e) Bn = 6 l=0,1 N-1
if it has a solution with at least one By to them
15Bn 4n11 = (2Bn 4m, 2Bete)
= \$\frac{2}{n} \leq (4n, 4e) B_n Be.
8=0
= 5 0.Be. = 0
but then Stang are Not linearly independent
if { In } are linearly independent the least squares
approximation is non trivial and unique.
·
4) Completeness and complete orthonormal sets for use.
> A few facts from finite dimensimal vector space theory (u, v, w) are vectors
· wher product -> (u,v) = (v,u)*. In vector
$= (\alpha u + \beta v, u) = \alpha^* (u, u) + \beta^* (v, u)$
$= (u,u) \ge 0 \forall x , = 0 \text{iff} x = 0$
· Bessels idequality : suppose { U;} i=1,2n are linearly independent, then for all V
v 2 = (v,v) = \(\frac{2}{2}\)(u;,v)
· the linearly independent set SUiz = U can always be made
orthonormal by Gram-Schmidt procedure.

Completeness of the set {u-}= U (i=1n)
Amounts to any one of the following such of
which follows from any of the others.
· U is complete (in V)
· IF (w, ui) = 0 for i=1,2, in then W=0
- U spans V
· IF wis in V then w= 5 (Ui, w)Ui
· if V, w are in V then (w,v) = E (w, w;) (u;v)
· If V 15 in V Then 11 VII2 = \$ 1(Vi,V) 12
(and e executely
(Bessels inequality with the equals)
sign b
-> INFINITE dimensimal (function) spaces are more difficult
14 particular, when we represent $f(x)$ by a series $f(x)$
as in $f(x) = \sum_{n=0}^{\infty} \phi_n A_n$
we might mean
i) the 1.h.s. converges to f(x) at all x (Point wise or uniterm
(close analogy to finite discount spaces) convergence
or
ii Coovergonce in the mean
e.g. $\lim_{N\to\infty} \int_a^b f(x) - \sum_{n=0}^{N-1} A_n \phi_n(x) dx = 0$
the latter, weaker conveyence. is just the statement
that
11m 11 C -: F - 11 - 0
11m // f f // = 0
where for 15 the sequence of least squares
approximations

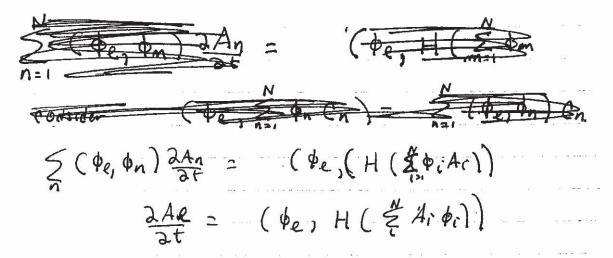
For S.L. problem (with proper boundary dondition). I \$\phi_n = \lambda w \formath{\eta}_n.
8.
• Self-edjoint $\begin{cases} \lambda & \text{is real} \\ (4n, 4e) = 0 & \text{valess} n = \ell. \end{cases}$
(4n,4e) = 0 valess n=1.
• orthorormal set
a Completeness
Fourier Senes
Bessel functions
Various polynumials Jacobi
Gegen baver
< chebychev
Lesendre
La guerre.
on the first exterval the S-L. {4n}
are complete whenever $\lambda_n \to \infty$ as $n \to \infty$.
2 - 1
are complete whenever $\lambda_n \to \infty$ as $n \to \infty$. [characteristic scale $l_n = \frac{1}{\sqrt{\lambda_n}} \to 0$ as $n \to \infty$]
w-/ d
• Rate of conversence of $f(x) \approx \sum_{e=0}^{N-1} A_e de$
-> always at least algebraic
Ae ~ Le as l-sa!
often / /
L3
-> NON JENGULEN (-L problem p(x) > 0 W(x) > 0
algebraic convergence except
when special conditions are satisfied
at the boundaries

-> singular S.L problem; e.g. p(a)=0
relaxes the convergence conditions so the order
of convergence rate depends on the
Smoothness of $f(x)$ near $x=a$,
not on the boundary conditions
(6) Fourier series $f(x) = \frac{+\kappa}{2} a_{R} e^{-\kappa x}$ least squares approximation
o f(x) smooth and periodic (NU discontinuities)
Uniform convergence.
- f(x) nonperiodic or hes an interior discontinuits
=> Gibbs phenomenon near region of
X near to of size ~ 1 as k=0
· rate of conversince
$a_{k} = \frac{1}{2\pi} \int_{e}^{2\pi} f(x) e^{-ikx}$
suppose f is periodic and hes continuous derivatives
up to order n-1 and dnf(x) is integrable.
of to order 11-1 and dxn
then, integrating by parts
Then, integrating by parts $a_{K} = \frac{1}{2\pi i} \frac{1}{(ik)} n \int_{0}^{2\pi} \frac{d^{n}f(k)}{dx^{n}} e^{-ihx} dx$
Cur of an
then I dre do << 1 as k >000
J JXV C 18
and $ a_{k} \ll \frac{1}{ k ^{n}}$ as $ k \rightarrow \infty$
Therefore if f is infinitely differential
(ax) > 0 faster than any power of R
us R=000

f continuous, f'integrable apec/k n > e

f'pieceuise continuous an 1/k2 h > co with K the maximum wevenumber if ar > for as k > 0 but not fester then If is discontinuous Theochore. $f_K - f = O(K^n)$ away from the descontinuity = $O(K^{-n+1})$ when $X-X_{discontract} = O(1/K)$ IF f is interitely differentiable and periodic fix = f fester than any power of 1/K (7) Chebycher Jeries $f(x) = \sum_{n=0}^{\infty} A_n T_n(x) \qquad -1 \leq x \leq +1$ is closely related to Fourier series since $T_n(\cos\theta) = c n \theta$ \Rightarrow if f(x) is infinitely differentiable, $f_N = \sum_{n=0}^{N-1} A_n T_n(x)$ converses to f faster them any power of UN > No G166s phenomenon at X=±1 (Singular S-L problem) D Gibbs phenomenon at interior discontinuities => MINIMAX property: Maximum of the renauder is MINIMUM.

B. TYPES OF SPECTRAL METHODS
D Galerkin (Spectral) Method
$U_{N} = \sum_{n=1}^{N} A_{n}(+) \phi_{n}(x). \tag{1}$
is an approximation to UCT), satisfying
24 - H(u) H= nonlinear differential (2)
where the Zang satisfy the boundary conditions on u
Assume that U is "exact" at some time t
i) work with the best (least squares) approximation to U, of the form (1); If i UN
ii) calculate the best (least squares) approximation to H(UN), of the form (),
$\left(\frac{\partial u}{\partial t}\right)_{N} = \sum_{i=1}^{N} B_{i} \phi_{i}$ $u_{N} = \sum_{n=1}^{N} A_{n} \phi_{n}$
He $(\frac{\partial u}{\partial t})_{N} - H(u_{N}), \frac{\partial u}{\partial t})_{N} - H(u_{N})$ by setting $\frac{2}{38} = 0 = \frac{2}{38}$.
results in Be = (pe, H(UN))
Be= $\frac{2Ae}{2t}$ = $\left(\frac{Ae}{2} + \left(\frac{Ae}{2} + \frac{Ae}{2}\right)\right)$
where (\$e, \$m) = Sem has been used (orthonoral taxis)


this prescription can also be written using projection operatures PN

Recall 1 projection operator salorfy $P_N^2 U = P_N U$ $(P_N^2 - P_N) U = 0$ $\Rightarrow P_N U = \lambda U$ has solute for $\lambda = 0$ or 1 $(1 - P_N)$ is a projection onto a space orthogod to the space projected onto by P_N

the spectral equation in terms of PN's are

all = PN H (PN UN)

calculate inner product with & (pe,), on (2)

can be easily generalized for lineary independent bet don orthogonal [\$1)

	UN = ZARPe.	¿φεζ each saks boundery con u.
(5)	au = H(u)	
ر) ر	select a set f points Xi	· (=1,2N
Lil	require that UN(Xi) =	= u(xi)
	require that $U_N(Xi)$ = to determine $Ae = >$	$\sum_{k=1}^{N} A_k \phi_k(x_i) = U(x_i)$
pointof	view 1:	
	Eq. (2) 15 solved in	(x,t) at the
	points { Xi}, usice	ng the interpolating
	function UN = \$ AL	Pe
	to evaluate all Nerio	ratives, by defferentiations
	be numerically or en	
point of i	view 2 !	
{Ae	} coefficients are advanced	in time, with
	2 operations, especially a	
	H(u) evaluated by for	
	d doing them in {Xi}.	
	perties i) and iil serve t	Ne Fine PA

(3) TAU Method

$$U_{N} = \sum_{n=1}^{N+R} A_n(+) \phi_m(x)$$

In do NOT satisfy boundary conditions separately but they are onthonormal.

- i) the first N terms A, A2 AN satisfy a least squares approximation
- ii) The last k terms are chosen to satusfy R boundary constraints

then for $\frac{2u}{\delta t} = H(u)$

 $\frac{2An}{2t} = (\phi_n, H(U_N)) \qquad n = 1, 2, ... N$

Nth An B pn = 0

where B is an operation evaluation UN at the boundaries in the proper way.

C ADVANTAGES (and some DISADVANTAGES) OF SPECTIME METHODS
lack of Dephase errors
suppose you have $U_N = \sum_{n=1}^\infty A_n \ \phi_n$
and you went $U_N = \sum_{n=1}^N A_n \phi_n$
if you can calculate on exactly, The demunsion
13 exact, up to roundoff.
Fourier Series UN = E An e chox
$u_{n}' = \sum A_{n} i k_{n} e^{i k_{n} x}$ $= \sum B_{n} e^{i k_{n} x}$
= EBnechox
$B_n = i h A_n$
Chebycher series $U_N = \sum_{i=1}^{n} A_n T_n(x)$
ninerally
From From Trown (x)
$T_n(x) = coa(n coa^{\prime}x)$ = $\sum A_n T_n'(x)$
$T_0' = 0$
for $n \ge 2$ $\frac{T_{n+1}}{n+1} = 2T_n(x) + \frac{T_{n-1}(x)}{n-1}$
Thus (Bn) 15 obtainable from (An) by
a matrix multiply.
evaluate Th'(x) for the needed points (psuedospectral once

This is in contrast to The phase errors that are sometimes substantial in finite difference schemes!

A
$$U_{3} = \frac{U_{3+1} - U_{3-1}}{2\Delta}$$
 applied To $U = e^{i \ln x}$

$$\Delta U_{j} = \frac{e^{inX_{j+1}} - e^{inX_{j-1}}}{2\Delta} = \frac{e^{inX_{j}}}{2\Delta} \left(e^{in\Delta} - e^{-in\Delta} \right)$$

$$\approx \frac{2 u}{\Delta} \left(n\Delta - \left(n\Delta \right)^3 + \cdots \right) = \left(1 - \frac{n^2 \Delta^2}{6} + \cdots \right) iu$$

need na << | for accuracy

ennon is order (na)2.

higher order methods

- E) closely related ... Algebraic differentiation
 → less operations
 → less subtractions
- B) HANDLING of boundary condition.

 Galericia and pseudo spectral i exact!

 but restricted in which boundary

 conditions can be handled.

• .

9 High order convergence of the approximations
e inflaire order in some ceses
(3) Global Nature
· ran slide collocation points around for
loral effects
6 Courrol over resolution
and the second of the second o
and the second of the second o
en e
· · · · · · · · · · · · · · · · · · ·
and kan de

$$\frac{2u}{2t} + \frac{2u}{2x} = 0$$

IVITIAL CONDITIONS

exact solution 1)

Fourier expension of exect u(xt)

$$u(x,t) = \sum_{k} e A_{k}(t) e^{ikx}$$

$$A_R(t) = \frac{1}{2\pi} \int_0^{2\pi} \sin \left[\pi \cos(x-t) \right] e^{-thx} dx$$

Using the generating footin for Bersel fontim

evaluated at t= ieio

$$e^{i2cn\theta} = \sum_{m=-\infty}^{\infty} J_m(z) e^{im\theta} i^m$$

let 2= 17 , 0= x-t

$$\frac{2}{e} = \prod_{x \in X} \frac{1}{\pi} \left(\frac{1}{\pi} \right) e^{i \pi \left(\frac{1}{\pi} \right)} e^{i \pi \left(\frac{1}{\pi} \right)}$$

then calculate the related integral

$$T_{K} = \frac{1}{2\pi} \int_{M}^{\infty} \frac{1}{2\pi} \int_{M}^{\infty} \frac{1}{2\pi} \int_{K}^{\infty} \frac{1$$

numerical methods.
$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0$$

choose
$$X_{J} = \frac{2\pi J}{N}$$
 $J = 0, 1 - N - 1$

$$\frac{\partial u(x_4)}{\partial t} = -\frac{\partial u}{\partial x} \Big|_{x=x_4}$$

$$\widehat{u} = 1$$
 attempolating = $\sum_{k=-N_2+1}^{N/24} A_k e^{ikx}$
function $k=-N_2+1$

where At is calculated from the numerical solution

Numerical Results (4th order Russe-Kutta time styp)

wi	L-1		FINITE	Diff:
N	Galerkin	Pseuduspecma	2 nde	4 Morden
8	9.8 x10-2	1.62 ×10-1	7.11	9.62 10-1
16	2.55 * 104		6.13 × 10-1	
32	1.05 ×10-11	1.03 × 10-11		
64	6.22 x10 73	9.55 × 1612	5.42 ×10-2	1.85x10
128			1.37 ×10-2	1.18 216

2D periodic geometry

$$\alpha = \alpha(x, y, t)$$
 $V = K(x, y)$ independent y time

$$\int a(x,y,0) = -\sin 2y - \frac{1}{10} \sin 2x$$

$$V(x,y) = -2 \sin x y$$

Solution 15

$$a(x,y,t) = a(x,y+2t\sin x,o)$$

some conserved quantities

$$\int a^{2n} d^2 x = const. \quad n = 1, 2, 3 \dots \infty$$

but can't conserve all of Then exactly with any numerical scheme.

$$A = \int a^2 d^2 x = Mean Square vector potential in 20 MHD$$

other exactly known properties:

$$\frac{1}{2}\int [\nabla a]^2 d^2x = \frac{1}{megnetic} = E_B = 1.01 + 2t^2$$
energy"

$$\frac{1}{2} \int (\nabla^2 a)^2 dx = \frac{mean}{square} = J = 4.04 + 18t^2 + 24t^4$$
current

-> Method & Holuti: Galerkio N=64 "64x64" method.

Time steping 2nd order assumte explicit, At = 256

Error = 1/8172 (aexact - anumerical) 20 x = E(t)

roundoft (10t) up until t>4

WWW E F N

0.176 up vatil t>6

 $AJ \sim 6 \times 10^{-4}$ at t=6 $A \in \mathbb{R}$ $\sim 6.4 \times 10^{-4}$ at t=6

(A few graphs ...)

The exact solution had.

WITH
$$[J_0^2 + 2J_1^2 + 2J_2^2 + --]$$

trans =

- Transfer in this problem
- E) Galerkin method has very high accoracy for Inser problems, and very high accoracy for nonlinear problems provided that spectral transfer does not try to push exectation out past know

E. Evaluation of NONLINEAR TERMS (transform methods, aliasins, etc.)
$\frac{\partial u}{\partial t} = u(x) V(x)$
(1) CONVOLUTION theorems form
(i) convolution theorems a) continous, infinite donain $f(x) = \int_{-\infty}^{\infty} F(n) e^{i \delta x} dx \qquad g(x) = \int_{-\infty}^{\infty} G(k) e^{i \delta x} dx.$
$f(x) = \int_{-\infty}^{\infty} F(x) e^{-x} dx \qquad g(x) = \int_{-\infty}^{\infty} G(x) e^{-x} dx.$
let $h(x): f(x)g(x) = \int H(x)e^{-ikx}u$
Then $H(R) = \frac{1}{2\pi r} \int_{-\infty}^{\infty} k(x)e^{-ikx} dx$
= 1 ge-ilx ff(p)e'px/p f6(q)e'8xdg &
= it Slpdq F(P) G(8) Je (p+q-k) x
= Slapedy F(p) 6(9) S(k-y-p)
H(k) = Sdp F(k-p)G(p) CONVOLUTION INTEGRAL
product in X space -> convolution in k space
product in k space -> convolute in x space.

Found series interior

g(x)= & G(12) e chr $f(x) = \sum_{k} F(k) e^{ikx}$ H(h)= IT Sox e-inx A(x) = in Sax e-ibx & F(p) e P & G(q)e = $\sum_{p=1}^{\infty} F(p) G(q) = \lim_{n \to \infty} \int_{-\infty}^{\infty} dx e^{i(p+q-k)}$ $H(k) = \sum_{R} F(R) G(R-R)$

C) Fivere number of degrees of freedom on a fiver vertical

$$0 \le x \le 2iT$$
, $Y_i = 2iT(i-i)$, $i = 1,2...N$
 $k = -N/2 + 1$, ... $0, 1...N/2$. [or, if you like: $0, 1...N - 1$]

Discrete Fourier series (formally prinodul in X_i and X_i)

 $f(X_i) = \sum_{k} F(k) \in {}^{i}RX_i$ $F(k) = \frac{1}{N} \sum_{i=1}^{N} e^{-ikX_i} F(X_i)$

Note e^{ikX_i} is orthogod to e^{ikX_i} unless $k = k'$
 $f(X_i) = \sum_{k=0}^{N} e^{ikX_i} \frac{1}{N} \sum_{j=1}^{N} e^{-ikX_j} F(Y_j)$
 $= \sum_{k=0}^{N} F(X_j) \frac{1}{N} \sum_{k=0}^{N} e^{-ikX_j} F(Y_j)$
 $= \sum_{k=0}^{N} F(X_j) \frac{1}{N} \sum_{k=0}^{N} e^{-ikX_j} F(Y_j)$
 $= \sum_{k=0}^{N} F(X_j) \frac{1}{N} \sum_{k=0}^{N} e^{-ikX_j} F(Y_j)$
 $= \sum_{k=0}^{N} e^{-ikX_j} \frac{1}{N} \sum_{k$

$$h(X_{i}) = f(X_{i}) g(X_{i})$$

$$h(X_{i}) = \sum_{k=0}^{N-1} H(k) e^{ihx}$$

$$H(k) = \int_{1}^{N} \int_{2}^{1} h(X_{i}) e^{-ik2\pi i \pi i/N}$$

$$= \int_{1}^{N} \int_{2}^{1} e^{-i2\pi i \pi i/N} \sum_{p=0}^{N-1} F(p) e^{i2\pi i \pi i/N} \sum_{p=0}^{N} G(q) e^{-i2\pi i \pi i/N}$$

$$= \int_{1}^{N-1} \sum_{p=0}^{N-1} F(p) G(q) \int_{1}^{N} \int_{1}^{N} e^{i2\pi i/N} (p+q-k)$$

$$= \int_{1}^{N-1} \sum_{p=0}^{N-1} F(p) G(q) \int_{1}^{N} \int_{1}^{N} e^{i2\pi i/N} (p+q-k) \int_{1}^{N} e^{-i2\pi i/N} e^{-i2\pi i/N}$$

$$\sum_{N=1}^{N} e^{i2\pi i k} (E^{k} - R^{i}) = ? let k = KN + k'$$

$$l = LN + l'$$

$$\sum_{j=1}^{\infty} e^{i2\pi A(L-K)N} e^{i2\pi A(e^{j-k^{j}})}$$

$$= \frac{1}{N} \frac{1 - e^{i2\pi r_{N}^{2}(\ell-k')}}{1 - e^{i2\pi r_{N}^{2}(\ell-k')}/N} = \begin{cases} 0 & \text{if } k \neq \ell \\ 1 & \text{if } k' = \ell' \end{cases}$$

but thuis the same is
$$1 \le e^{i 2\pi f_{k}} (l-k) = \begin{cases} 1 & \text{if } k = k \mod N \\ 0 & \text{otherwise} \end{cases} \le \delta_{l,k}(N)$$

$$h \equiv R$$
 and N neur $l = QN + R$
for some Q outeger, when $k \leq N$

$$H(k) = \sum_{p=0}^{N-1} \sum_{q=0}^{N-1} F(p) G(q) \left(S_{p+q}, k(N) \right)^{-1} P + q = k P +$$

$$= \sum_{p} F(p) G(k-p)$$

Second Two Terms are "alleses" of the convolution

Aliasing errors
Note in galerki approximation to

the spectral equatine an

$$\frac{2F(k)}{2t} = \sum_{\substack{p+q=k\\ p \in \{-N_2+L+N/2\}\\ g \in \{\}\\ k \in \{\}}} F(p) G(q)$$

$$\equiv H^{s}(k)$$

"s" for spectral spa

therefore, instead of the usual convolution Theorem, The transform method gives

$$H(k) = \frac{1}{N} \sum_{j=1}^{N} f(x_j) g(x_j) e^{-ikz\pi j/N}$$

$$= H^{9}(k) + H^{9}(k+N) + H^{9}(k-N) \quad "9" \text{ for galer}$$

aliasing errors the is what you get with a psucho spectral method.

```
(3) Eliminating Aliasing errors in
              \frac{2f}{2f} = f(x)g(x)
      where Kj = 21 (2-1)/N
a) extended and
   suppose that we form -
             F(R) = \int_{N} \sum_{i=1}^{N} F(X_{i}) e^{-iRX_{i}} as before
  but Now defeni the extended Transform Pe as
            F^{e}(k) = F(k) k = 0, 1, ... N-1
 thus Fe is a ZN point Transform, with exactly
   the same information as F(12)
   Also do the same for G = Ge(k) k= 0,1... 2N-1
  Now form
         He(k) = 1 2N 2 he(X) e- ikzri/2N
                = 1 2N-1 2N-1 F(p) G(g) ZN (p+g-k).

= 1 2N p=0 q=0 F(p) G(g) Z e (21T) (p+q-k).
        H(k) = = = F(P) 6(8) Sp+9, K(2N)
                                       P+9= Q2N+R
                                      for some integer Q
            but the biggest that ptg can be, for wonzero
            Peun Ge is N+N-2 Swee
             FE(R) 70 only for 1R1< N/2, on so only
             Nonzero term 1s for Q=0 and
        He(R) = H9(R) for 1R1 < N/2 which is the Galerkin on volution
```

b) Shifted grid

Still working at

2 = f(x)g(x)

Suppose we have already calculated. $H(R) = H^{9}(R) + H^{9}(R+N) + H^{9}(R-N)$ The following errors

Now form the shifted grid convolution

where $f(X_{J+1/2}) = \sum_{k=0}^{N-1} F(k) e^{\frac{i2\pi R(J+1/2)}{N}}$ $g(X_{J+1/2}) = \sum_{k=0}^{N-1} G(k) e^{\frac{i2\pi R(J+1/2)}{N}}$

$$H^{S}(R) = \sum_{p=0}^{N-1} \sum_{q=0}^{N-1} F(p) G(q) \int_{N=1}^{N} \frac{e^{-2\pi i \frac{n}{N}} (p+q-K)/N}{\sum_{p=0}^{N-1} \frac{e^{-(p+q)}}{N}} e^{-(p+q)} \int_{N}^{N} \frac{e^{-(p+q)}}{\sum_{p=0}^{N} \frac{e^{-(p+q)}}{N}} e^{-(p+q)} \int_{N}^{N} \frac{e^{-(p+q)}}{\sum_{p=0}^{N} \frac{e^{-(p+q)}}{N}} e^{-(p+q)} e^{-(p+q)} \int_{N}^{N} \frac{e^{-(p+q)}}{\sum_{p=0}^{N} \frac{e^{-(p+q)}}{N}} e^{-(p+q)} e^{-(p+q)$$

$$= \sum_{P=0}^{N-1} F(P) G(k-P) e^{i\pi R/N}$$

$$+ \sum_{P=0}^{N-1} F(P) G(k+N-P) e^{i\pi R/N} e^{i\pi N/N}$$

$$+ \sum_{P=0}^{N-1} F(P) G(k-N-P) e^{i\pi R/N} e^{-i\pi N/N}$$

$$+ \sum_{P=0}^{N-1} F(P) G(k-N-P) e^{i\pi R/N} - i\pi N/N$$

$$= e^{i\pi R/N} \int_{P=0}^{N-1} H^{G}(k) - H^{G}(k+N) - H^{G}(k-N) \int_{P=0}^{N-1} H^{G}(k-N) dk$$

There		·····	· · · · · · · · · · · · · · · · · · ·		
<i>H</i>	HG(R) = 2 ;	H(k)	+ e-(Th HS	R-) }	
		•	\wedge	1	
gives 7	he exact gal	lerkin Conc.	ordinari transfor nother nother	Transform Method on The shifted grid	
77					
	· · · · ·				
· · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·					
· ·					

I Turbulence in MHD (and Hydrodynamics)

A. Incompressible MHD

(1)
$$\frac{\partial V}{\partial t} + V \cdot DV = -DP + J \times B + V D V$$

(2)
$$\frac{2B}{2t} = \nabla \times V \times B + \mu \nabla^2 B$$

1 Nonlinear Terms = Convolutions in 12 space

(ie) amplitude in k changed by all P, 9 such that P+9=k. Eigetspectral Transfer.

· linearterns 2024, udB damp each fourier mide.

$$\frac{2V(k)}{2t} \sim -2k^2 V(k) = \sum_{\substack{0 \text{ of } y \\ \text{Thing}}} V(k,t) = V(k,0) \in$$

B. Spectral equation: SD MHD

USINS
$$J \times \Omega = (0.6) \times B = -D \mathcal{L}^c + B.DB$$

and 48^{2000} $P^* = P + B^2/2$
 $\Rightarrow \frac{\partial V}{\partial t} + V.DV = -D P^* + B.DB + V D^2V$

Let $V = \sum_{ij} V(R,t) e^{+iR_i X}$ $B = \sum_{ij} B(R,t) e^{-iR_i X}$

Let $V = \sum_{ij} V(R,t) e^{+iR_i X}$ $B = \sum_{ij} B(R,t) e^{-iR_i X}$

Let $V = \sum_{ij} V(R,t) e^{+iR_i X}$ $B = \sum_{ij} B(R,t) e^{-iR_i X}$

Let $V = \sum_{ij} V(R,t) e^{+iR_i X}$ $B = \sum_{ij} B(R,t) e^{-iR_i X}$

Let $V = \sum_{ij} V(R,t) e^{+iR_i X}$ $B = \sum_{ij} B(R,t) e^{-iR_i X}$

Let $V = \sum_{ij} V(R,t) e^{+iR_i X}$ $B = \sum_{ij} B(R,t) e^{-iR_i X}$

Let $V = \sum_{ij} V(R,t) e^{+iR_i X}$ $B = \sum_{ij} B(R,t) e^{-iR_i X}$

Let $V = \sum_{ij} V(R,t) e^{+iR_i X}$ $B = \sum_{ij} B(R,t) e^{-iR_i X}$

Let $V = \sum_{ij} V(R,t) e^{+iR_i X}$ $A = \sum_{ij} V(R,t) e^{-iR_i X}$

Let $V = \sum_{ij} V(R,t) e^{+iR_i X}$ $A = \sum_{ij} V(R,t) e^{-iR_i X}$

Let $V = \sum_{ij} V(R,t) e^{+iR_i X}$ $A = \sum_{ij} V(R,t) e^{-iR_i X}$

Let $V = \sum_{ij} V(R,t) e^{+iR_i X}$ $A = \sum_{ij} V(R,t) e^{-iR_i X}$

Let $V = \sum_{ij} V(R,t) e^{+iR_i X}$ $A = \sum_{ij} V(R,t) e^{-iR_i X}$

Let $V = \sum_{ij} V(R,t) e^{+iR_i X}$ $A = \sum_{ij} V(R,t) e^{-iR_i X}$

Let $V = \sum_{ij} V(R,t) e^{+iR_i X}$ $A = \sum_{ij} V(R,t) e^{-iR_i X}$

Let $V = \sum_{ij} V(R,t) e^{+iR_i X}$ $A = \sum_{ij} V(R,t) e^{-iR_i X}$

Let $V = \sum_{ij} V(R,t) e^{+iR_i X}$ $A = \sum_{ij} V(R,t) e^{-iR_i X}$

Let $V = \sum_{ij} V(R,t) e^{+iR_i X}$ $A = \sum_{ij} V(R,t) e^{-iR_i X}$

Let $V = \sum_{ij} V(R,t) e^{+iR_i X}$ $A = \sum_{ij} V(R,t) e^{-iR_i X}$

Let $V = \sum_{ij} V(R,t) e^{+iR_i X}$ $A = \sum_{ij} V(R,t) e^{-iR_i X}$

Let $V = \sum_{ij} V(R,t) e^{-iR_i X}$ $A = \sum_{ij} V(R,t) e^{-iR_i X}$

Let $V = \sum_{ij} V(R,t) e^{-iR_i X}$ $A = \sum_{ij} V(R,t) e^{-iR_i X}$

Let $V = \sum_{ij} V(R,t) e^{-iR_i X}$ $A = \sum_{ij} V(R,t) e^{-iR_i X}$

Let $V = \sum_{ij} V(R,t) e^{-iR_i X}$ $A = \sum$

x(p) = x(p) - (h-b)

$$\frac{2V_{i}(k)}{2t} = ike \sum_{p+q=k}^{2} -V_{e}(p) V_{i}(q) + B_{e}(p) B_{i}(q)$$

$$-iki Rn ke \sum_{p+q=k}^{2} -V_{e}(p) V_{i}(q) + B_{e}(p) B_{n}(q)$$

$$-2k^{2} V_{i}(k)$$

$$= (ike Sin - i \frac{ke k_{i}k_{n}}{k^{2}}) \sum_{p+q=k}^{2} B_{e}(p) B_{n}(q) - V_{e}(p) V_{i}(q)$$

$$-2k^{2} V_{i}(k)$$

$$(5) \sum_{p+q=k}^{2} \frac{2V_{i}(k)}{k!} = ike \left(Sin - \frac{k_{i}k_{n}}{k!}\right) \sum_{p+q=k}^{2} B_{e}(p) B_{n}(q) - V_{e}(p) V_{n}(q)$$

$$-2k^{2} V_{i}(k)$$

$$-2k^{2} V_{$$

(5) and (6) are exact equities, Galermant productival methods representation of (1) - (4).

	Galerkin and Pseudo spectral 3DMMD
<u>B.</u>	Galerkin Appox to (5) and (6) sn 3D, let (Rilnax = N/2, and sinule
	interpret all the fields as Towncated since
	interpret the consolution in the consolution
	Sot S ! { R with [Ri]
	P+q=K
	Ri, Pi, li & S
	Implementation is more difficult
	· Multidemeasimal transform nethods
	-> pseudo spectral
	Multidinersial De-aliasing (we'll get to that)
	- Combination of Shifted good and good extension
	6 Compact Representations
	(5) and (6) preserve R.B(k) = R.V(k) = 0
	but can you get away with 2 components for each vector?
	in principle, yes
	$B(k) = i k \times 2 b_1(k,t) + k \times (k \times 2) b_2(k,t)$
	but it gets complianted.
	in other geometries (Turner, Christiansen forctin)
	[in other geometries (Turner, Christiansen footin)] $B(X) = \nabla X \widehat{2} b_1 + \nabla x (\nabla \times b_2 \widehat{2}).$
	the state of the s

Pseudo spectrul 3D MHO
2 approaches
1) solve (1)-(4) along with (3')
e using fourier representation to calculate
all derivatives, transfor back to X-space
to form nonlinear products
· Pe equation can be solved using Transform
nethol
dessipation can be handled in either x or to
19100
2) solve m 12 space, but don't dealiese
the convolutions
C. Conservation Laws in MHD gradoulence
C. 2D MHD in periodic geometry
- widely studied.
let $B = B(x,y,t)$ periode in 2CT
V = K(X, Y, t) in X and y direction
Then $B = D \times 2 \alpha(x, g, t)$ 2 conjunct $V = D \times 2 4(x, g, t)$ 2 reamfant Y

The current density $J = D \times B = - \nabla a \hat{z} = j \hat{z}$ The vorticity $\Omega = D \times V = - D^2 4 \hat{z} = \omega \hat{z}$

then V.B = DIV = 0 automatically and

2w+V.Dw=B.B+iDw

2a+v. Da = u Da.

the Fourier representation of these are

 $\frac{2\omega(\kappa)}{2t} = ik \cdot \underbrace{\sum_{q+p=\kappa} (B(q)J(p) - V(q)\omega(p))}_{q+p=\kappa}$

- 2 k2 W(K)

2a(E) = -ik. Z V(8)a(P) - uka(k)

The Galerkin approximate is obtained directly by respecting all wave numbers to lie in the N^2 space with $|Ri| \leq N/2$

The Transform nethod is typically used and is de-aliesed.

D. Conservation Lews in MHD : exact equation with v=u=0

define <... > as the volume average.

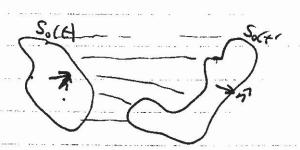
over a volume fixed in time, volume V, sufor S

energy = $\langle v^2 + B^2 \rangle / z = E$

 $\frac{dE}{dt} = 0 \quad \text{for} \quad \begin{cases} \text{periodic boundance} \\ \hat{n} \cdot B = \hat{n} \cdot V = 0 \quad \text{on surface.} \end{cases}$ $V = 0 \quad \text{on surface.} \quad \begin{cases} V = 0 \quad \text{on surface.} \end{cases}$

Cross helicity Hc= < V. B/2

Magnette Heliaty


Hm = (4.B)/2

 $\frac{d H_m}{d T} = 0$ $\begin{cases} A \cdot B = \hat{N} \cdot V = 0 \text{ on } S \\ B = 0 \text{ or } V = 0 \text{ along} \end{cases}$ with electrostatio F=0 m.

B=DXA

Many others P.S. Alfun flux invariants

Spinda = 0 So(t)

20 MHD.

$$E = \langle v^2 + B^2 \rangle_2$$
 is constant

but
$$A = \langle a^2 \rangle /_2$$
 is constant for periodic bic's and other.

others

equivelents of Alten invenions

$$\frac{\partial a}{\partial t} + v_i Da = 0 = \frac{Da}{Dt}$$
 convective

every naterial element maintains a constant value of a as it moves around....

implies that
$$\frac{d}{dt} \int a^{2m} dx = \int a^{2m-1} 2a d^{2}x$$

$$= \int a^{2m-1} v \cdot \nabla a d^{2}x = \int \nabla \cdot v a^{2m} d^{2}x$$

and is equivalent to the Altren flux (x carrent)

2 -
$$S_{o}(t)$$
 $d = \int_{a_{t}}^{b_{t}} \int_{a_{t}}^{b_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt$

$$= \int_{a_{t}}^{b_{t}} \int_{a_{t}}^{b_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \int_{a_{t}}^{b_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \int_{a_{t}}^{b_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \int_{a_{t}}^{b_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \int_{a_{t}}^{b_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \int_{a_{t}}^{b_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \int_{a_{t}}^{b_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \int_{a_{t}}^{b_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}} \left(\nabla x \hat{z} a\right) \cdot \hat{h} dt = \int_{a_{t}}^{a_{t}$$

E Rugged Invariants E-Hc Hn in 3D EHe A m 20 (E < 527 m 20 Navier Stokes) these are invariants for any (ideal) Galerkia approximation, in fact they are invariants for eny triad of wave vectors satisfying K+P+g=0example rugged ronservation of A= <a27/2. in 2D MHD with M=0 $\frac{2a(\kappa)}{2t} = -ik \cdot \sum_{p+q=\kappa} V(p)a(q)$ $a(\kappa) \frac{2a(-\kappa)}{2t} = i k \cdot \sum_{p+q+\kappa=0} V(p) a(q) a(\kappa)$ $=\frac{1}{2}\frac{2}{57}|a(x)|^2$ $=-i\sum_{\substack{p+q+k=0\\p\neq k=0}}V(p)\cdot q\ a(q)\ a(k)$

Similarly
$$\frac{\partial a(-q)}{\partial t} = i q \cdot \sum_{\substack{q+p+k=0\\ \frac{q+k}{2}}} V(p) a(k)$$

$$= -\frac{i}{2} \sum_{\mathbf{r},\mathbf{r}+\mathbf{k}=0} V(\mathbf{r}) \cdot \mathbf{q} \ a(\mathbf{q}) \ a(\mathbf{k}) + V(\mathbf{r}) \cdot \mathbf{k} \ a(\mathbf{k}) \ a(\mathbf{q})$$

$$=-\frac{1}{2}\sum_{q+p+k=0}^{\infty}V(p)\cdot(q+k)\alpha(q)\alpha(k)$$

$$=\frac{1}{2}\sum_{g+g+k=0}^{g}V(p)\cdot P a(g)a(k) \equiv 0 \text{ since}$$

$$V(p)\cdot P = 0$$

This holds for any set of k's p's and g's Since it is zero term by term for any V(p) interaction with both a(g) and a(k). only non tero modes we considered were 14ptg=0 1 (\$ | 9(9) | + \$ \(\mathbb{k}(\mathbb{k}) | \frac{1}{2} - \(\mathbb{L}(\mathbb{P}) \cdot (\mathbb{K} + 9) \alpha (\mathbb{K}) \alpha (\mathbb{K} since VCP) P = 0

Similar proofs of nugsed ness of E, He in 20
and E, He and Ha in 3D can be written down,
some involve writing the time development
of 3 modes down and summary
Un general rugged invariants are consered
by each triad satisfying
K + P + q = 0
and herefore are invariant for any Galericia
9 pproximation
What happens if there are some P+9 That
give Kortside &, the retained K's?
let that K be Koutside
Comment of a (Koutside) =
a (-Koutside) 2 a (Koutside)
2 t
but This Tyhis may be
15 = 0 Nontero (but 18 galericid Its not even
(alculated)

the spatial part of the galerkin codes therefore conserve the rugged invariants "exactly", i.e. up to roundoff and time integration errors

the shape of the set of retained wave rectors of is invelount, as long as the retained modes are updated according to the Galerkin convolutionsy and all modes outside of are always.

Kept = 0. In hose circumstances the above type of proof guarantees rugged conservation.

Dissipation (non zero mand 2) can change the values of the R.I's., Although only of Affects the magnetic R.I's such as A and Hm.

Non rugged ideal invariants of the continuous (exact)

equations are preserved for finited periods of

time by Galericia coder, when 22m = 0, but

eventually executations spread to Ruax, then

Nm-rugged invariants can change.

Since topological properties, such as convectivity of magnetic field lines depend on Non-rugged conservation principles, they well not be conserved by Godernia coder when $V=\eta=0$ for long times. Thus, e.g.

Whereal reconnection can occur, even though

hunerical dissipation canaot occur, when $V=q=0$. this does not mean that Numerical recondection occurs when $v\neq 0$ of $p \in V$. The MHD Turbohence and accuracy of spectrul order MHD Turbohence and accuracy of spectrul order Decome executed, for small or zero v,m , one may expect "ergodic" behavion: TDeal MHD: Abs. Eq. Enumble (Fife + Montar) Deg ({V(K), B(K)}^2) A exp $\{-\alpha \in V, m\}$ Can calculate Gibbs ensemble spectrum (V(K)) = $\{v, m\}$ on $\{v,$	menss, An ar apple. 43
This does not mean that Numerical recondection occurs when v to M to. F. MHD Turbulence and accuracy of spectrul cross	Inunerical dissipation commot occur, when v=q=0.
Deal MHD: Abs. Eq. Ensemble (Fyte + Monty) Deg ({ V(K)}, B(K)} Can Calculate Gibbs ensemble spectrum (V(K)) = fv(x, B, K, K))	ED DE 1500 DE L'EXPERTENTE EN LE MANAGE LE MANAGE DE LE LINE DE LA COLUMN DE L'ANDRE DE L'ANDRE DE L'ANDRE DE L
become exected, for small or zero $v_{,m}$, one may expect "ergodic" behavior. IDeal MHD: Abs. Eq. Ensemble (Fyfe + Monthson) Deg ({ V(K), B(K)}} ~ exp $\{-\alpha E - \beta Hc - \delta A\}$ can calculate Gibbs ensemble spectrum $\{V(K)^{k}\} = \{V(K)^{k}\} = \{V(K)^{k}\}$	F. MHD Turbulence and accuracy of spectrul order
$De_{1}(\{V(K),B(K)\}$ $\sim \exp \{-\alpha E - \beta Hc - \gamma A\}$ $con calculate Gibbs ensemble spectrum$ $\langle (V(K)K) = f_{1}(\alpha,\beta,\gamma,K)N \rangle$	one may expect "engodic" behavior.
n exp $\int -\alpha \mathcal{E} - \beta \mathcal{H}_c - \sigma A$ can calculate Gibbs easemble spectrum $\langle (V(K)^{k}) = f_{\nu}(\alpha, \beta, \sigma, K) \rangle$	IDEAL MHD! Abs. Eq. Ensemble (Fyfe + Monts
can calculate Gibbs ensemble spectrum $\langle (V(K) ^2) = f_{\nu}(x, \beta, \kappa, K) \rangle$	Dej ({ V(K), B(K)}
$\langle (V(K)K) = f_{\nu}(\alpha, \beta, \kappa, K) \rangle$	n exp f-a E-BHc-8A}
· · · · · · · · · · · · · · · · · · ·	can calculate G166s ensemble spectrum
1B(1C)(2) = fo(x, B, X, KN)	
	$\langle (B(\kappa))^2 \rangle = f_B(\alpha, \beta, \lambda, \kappa, N)$

W(K) | B(K) | Payer to the at | Payer to the at | W(K) const | W(K) const | R = large,

S-function at 44 as N=> (B(K)|2 [KK)|e V - excitations spread ergodically to all ellowed is, some Magnetic executation condense to Know, with the rest equipartitude with v DLSSIDATIVE M+1D B(K) direct energy INJECTIM Knin lyk KMay Kdiss ~ ((w2+12)) /4 JR k= Roussipath

	Rd	and en	rlarges to	he ra	nje of	direct
e (<u>144</u> , j. 1	the	al transfer direct cas	cade pou	verlau	ranse).	e Provide
م	60+	the energy	decay	rate	stell	should
· · · · · · · · · · · · · · · · · · ·	be	something	luce.	27. 22 .21. 22 .21.2	er engelski regelski kan k	
	-market of the second of the s			, ,2	· • · · · · · · · · · · · · · · · · · ·	-3/2

$$\frac{dE}{dt} = \frac{E}{\tau} = \frac{V^2}{4v} = \frac{E^{h}}{L}$$

IN analogy with laminar dissipate (Just looking at energy containing scales)

there is a turbulent dissipation coefficient

If you look at the effect of spectral transfer ead turbulent dissipote in the small scales

$$\frac{d E(k)}{dt} \sim \frac{V_R^2}{T(K)} \sim \frac{V_R^3}{\ell} \qquad \ell \sim \frac{1}{k}$$

while the small scale torbulent dissipation enougher is something like. Hat given by

(Heisenbury, Yastizawa, Montjonery)

the bottom line is That the galerkid approximate handles the spatial couplings within I very well; the only problem for physical dissipative MHO may be inadequate resolution.

Rol can only be well determined experimentally, however 3 estimates are useful (for v=11)

 $Rd = \left(\frac{|E|}{|at|}\right)^{1/4} \rightarrow \left(2\left(w^2+j^2\right)^{1/4} \sqrt{R}\right)$ where (w^2+j^2) is determined by or $\frac{1}{4}$

where (w2+j2) is determined from the scholating

when using driving terms, in steady state | de | 15 the time averaged of Jupply

of energy = time averaged

51/4 sty 3/4

Rd = / dE/14 2/4 (/2)3/4

(iii) hydrodynamie-like similarity value 1 kd. (v=y) $\frac{dE}{dt} \sim U_{L}^{3} = 2v(\Sigma + T) \Rightarrow \langle w^{2}+j^{2}=\frac{U^{3}}{2v}$

then $k_{d} = \left(\frac{2\nu(\omega^{2}+j^{2})}{\nu^{3}}\right)^{1/4} = \left(\frac{\nu^{3}}{L\nu^{5}}\right)^{1/4} = \left(\frac{\nu^{3}L^{3}}{L\nu}\right)^{1/4}$ $= \frac{1}{L}R^{3/4} = R_{0}R^{3/4}$

Paras. Pentrus

	Schenes
	Consider 24 = H(u)
Ofte	That were no serviced as a ser
٨٠٦	n, in implementation of spectral and pseudospectral
	a devade Time whenter
	homes are used> Because, they involve
UN	ILNIMUM NUMBER OF QUELLATIONS of H(U) and
_ 14	ally,
Typic	ally,
	(1 n+1/2 = (1 n 1 1 + 1/(1.11)
* ** ******	$\alpha^{n+1/2} = \alpha^n + \Delta t H(\alpha^n)$
550 A	$u^{n+1} = u^n + \Delta t H(u^{n+k})$
15 03	ed. a record and
100 DE SEE	ed, a second order modifica Evier nethal
C OUSIA	All concentrations are as an experience of the concentration of the conc
• •	$H(u) = V_{\frac{\partial u}{\partial x}} + \nu_{\frac{\partial x}{\partial x}}^2 u$
×	
Calcul	ate the growth factor (Von Neuman analysi)
	u -> ukeik
	·
ja e	ntl / ntl / ntl
t service system	UK = [1 + At Q + 4t Q] UK

a s go a style ou from the contraction of s

the growth factor is

$$G^{*}G = 1 - 2\nu k^{2} 4t + 2 \left[\nu k^{2} \Delta t\right]^{2}$$

$$- 4t^{3} \left[\nu^{2} k^{2} + \nu^{3} k^{6}\right] + 44^{4} \left[(k\nu)^{2} + \nu^{2} k^{4}\right]^{2}$$

i) V=0 Unconditionally wastable for pore advantage $G^*G=1+\frac{\Delta t^4}{4}(kV)^4$

161 = (1+x) 1/2 x = (4+RV)4

[GIN = (1+x)N/2 < e NX/2.

e NAt X

so 2 At is an an lower bound on the

foror e-folding time

Terror < 2 At = 8 At (At) 4 (BV) 4 = 8 (At) 3 (BV) 4

set V=1 R= Rmax

Terror = 8 (At) (Kna) 4

but accorney demands that At << shortest - 1
Timescale - Ruax V

let At= E = Terror= 8 RMax E3

this typically has given very long error growth times Pris. Print= 32, At = 2 Terro = 953 Muon= 120, At = 1024 Terror = 50 For ideal runs This error can be munitured by Following conservation of E and A in 20 If an ideal run conserves Then to better then a frection of a 70, things are OK out to that time. il Dissiputive case V has stabilizing effect in leading orders ANALYSIS of the full 4th order growth factor equation exercises that stability is achieved [6721] for values of $At = \frac{E}{k_{max}V}$ with $E \lesssim .3$ or so For R= 1 up to several Thousand. thus for most dissipative cases That we can resolve (in terms of Rd), the codes are with the explicit schene. In a practical

ACGURACY => STABILLTY

H. Conservation of "rugged" invariants in Collocation (Psaudospectra) codes

The arguments leading to conservation of R.I's by the Galericia method don't hold for pseudospectral algorithms. (ALIASING! in periodic case)

Orszag has given a general contersion for Conservation of energy, in Terms of Projection Operators that define the method.

 $\frac{\partial u}{\partial t} = H(u_N)$ exact $\Rightarrow \frac{\partial u}{\partial t}(u,u) = 0$

2UN = PN H (PNUN) Spectral Method.

Z(UN, UN) = (UN, PN H(PNUN))

odjoint (PNUN, H(PNUN)) = 0

For Navier Stokes flow This implies that, for pseudospectral Methods, one must write the NS equation as

3t = UX(DXM) - DP+2DU

uxw fom

Let L be the Laplacian De operator = D.g D be 9 be gradut 2) don't need. (but d=-d.) (d be than It can be shown that for pseudospectrol - D in the adjoint of 9* 2w = D(Bj-vw), 2a = + vxB = -v.gea. $g = (-V_g, V_x)$ $g = (-B_5, B_x)$ $\omega = -24$ 7 = - Xa. $E = \frac{1}{2}(94,94) + \frac{1}{2}(9a,9a)$ (94,94) = -(4,0.94) = -(4,24) = -(4,u) $\int_{\mathbb{T}} (4, \omega) = \left(\frac{24}{2t}, \omega\right) + \left(4, \frac{2\omega}{2t}\right) = 2\left(4, \frac{2\omega}{2t}\right)$

therefore
$$\frac{2E}{2t} = \left(4, \frac{2w}{2c}\right) + \left(4, \frac{2a}{3c}\right)$$

A similar proof holds for 3D MHD

The point is that the Wolcotin equation, uncorted must be written as

$$\frac{\partial a}{\partial t} = (v \times B)_z = -v \cdot va.$$

rather than

when the pseudo spectral vonlinear terms are calculated

He is conserved by this proceeder pectral method

III A 20 MHD Turbulence Code and some results

2a(k) = - ik. 5 v(r)a(p) + uka(k)

--ON

= \sum_{rmp=k} V(r) x B(p) - uh a(k)

 $\frac{2\omega(k)}{2t} = ik \cdot 5 \quad B(r) f(p) - \nu(r) \omega(p)$ $\frac{2\omega(k)}{2t} = -\nu k \omega(k)$

Z means spectral interpretating the convolution.

A. Dealiesins in Z.D. on an NXN grid.

2a(k) = 5 u(r)w(p) = H⁶(k)

use transform to form u(x) w(x)

and inverse transform

according to our previous results, slightly generalized this given

H(k)= HG(kx, ky) + HG(Kx+N, ky)

+ HG(Kx-N, Kx) + HG(Kx, Kx+N) + HG(xx, Kx-N)

+ HG(Kx+N, Ky+N) + HG(Kx+N, Ky-N) +HG(Kx-N, Ky+N) + HG(Kx-N, Ky-N) there are 4 singly aliesed terms and 4 double aliesed terms.

IN principle several shifted and some

could be taken, however, Orszeg and Patterson have shown that the following works:

i) form the 20 shifted gold convolution.

 $H^{S}(K) = \sum_{X(i,j)} U(X_{i+1/2}, Y_{3+1/2}) W(X_{i+1/2}, Y_{3+1/2}) - i K \cdot X$

ii) correct H(K) by forming a linear combination of H(K) and $H^{S}(K)$ Steps i) and iii) eliminate all sinsly-aliased errors.

1.e. $\frac{1}{2}[H(K) + e^{-i\pi(K_X + K_Y)}H^{S}(K)]$

= HG(K) + double alieses

10 addition, isoTropic Trunchtion is used. at each half end whole timestep all modes outside a redius Ky are set to zero 1.0. a(K)=0 for |K|>KT (Ky) 400= N/2 IF KT = KT = 2 (Kx) max = 2 N = N then this step removes all aliesing errors if $K_T = K_T^{(2)} = \sqrt{\frac{8}{9} \left(\frac{N}{2}\right)}$ then this step removes all double aliesing errors, but leaves The single-ones. Therefre (ii) apply isotropic Trunchtion with if = kg(2) at each half timety. Dull alcasing errors are removed.

B. 3D issues, etc.

- and shifted grids (for single aliesing errors)

 works in 3D as well.
 - Pseudospectral aull often be used in 3D anyway, for efficiency.

? what is the effect of Non conservation of the by pseudospectral

How to Make use of DOB = DOV = 0 to save storage. Is this important.

code site us code speed.

Memory size US disk speed.

execution speed

Code timing Nd code. to calculate I characteristic

log_N = N d dN N log_N = Time.

Time # Convolon FET!

Scaling tech

for the annay

arrans

machine memory (unit quickly realing to 3d if machines get faster

C. Aliesing instability, etc. (Phillips, Rouche, etc.)

of the Noulinear instability (Philips) in Fracte defenence algorithms appears to be tracable to alcasing errors. Often They are dealt with by adding that what high - k filtering.

What we found in Feverier procedes case

Pseudosp. = spectral + aliesing errors

aliesing may be

Stabilized, by

aritim in correct

form, on

the UNSTable, if

the operators

are Not telfedjunt.

Never any Never any Nonrensemith of E due To alcasing alrugged*

but can stabilize through dissipation

How can Chebycher pseudu spectral be
fully or partially de-aliased.

15 pseudu sp = spectral + aliasing
for Chebycher system?

· compressible MHD, NS

-> spectral defficult.

Nonlinearities are NOT quadratic.

• • • •

-> there has been some projects for pseudosp. Compressible NS

Leorat, Pouguet, grappin

the state of the state of

NICE Shocks, Rank, Hug, relations, etc.

MEINUDS and MHD TURBULENCE SIMULATIONS

BIBLIOGRAPHY

SPECTRAL METHODS

Patterson and Orszag, Phys Fluids 14, 2538 (1971) Gottlieb and Orszag, Numerical Analysis of Spectral Methods, SIAM, Philadelphia (1977) Orszag, Stud. Appl. Math, 50,293 (1971) 51,253 (1972)

HUSSAINI, Streett and Zang, I CASE Report 172248, NASA /LRC (1983)

Salv and Knorn, J. Comp. Phys. 17, 68 (1975) OrstAG and Israeli, Ann. Rev. FLuid MecH. 6,281 (1974)

APPLICATIONS

Fyfe and Montgomery, J. Plasma Phys. 16, 181 (1976) Fyfe, Joyce and Montgomery, J. Plesma Phys 12,317 (1977) Fyfe, Montgomery and Joyce, J. Plesma Phys., 17, 369 (1977) Kraichnan and Montgomery, Rep. Prog. Phys 43, 547 (1980) Matthews and Montgomery, J. Plesma Phys. 25,11 (1981). Menneguzzi, Frisch and Pougut, Phys. Rev. Lett. 47, 1060 (1981) Matthaeus and Montgomery, Ann. Ny Aeno. Sei 357, 203 (1980) Shebalin, Matthaeus and Montgomery, J. Plasma Phys. 29, 525 (1983) HOSSAIN, Matthaeus and Montsomery, J. Plesma Phys. 30, 479 (1883) Dahlburg, Montgomery and Malthans J. Plasma Phys 34, 1 (1985)

GENERAL

ROACHE, Computational Fluid Dynamics, Hermosa (1982) Potter, Computational Physics, John Wiley (1977) Dahlquist and Bjorck, Numerical Methods, Prentice Hall (1974)