

2292-15

School and Conference on Analytical and Computational Astrophysics

14 - 25 November, 2011

Elementary Introduction to Accretion Discs

Andria Rogava Georgian National Astrophysical Laboratory, Tbilisi Georgia

Elementary Introduction to Accretion Discs

Andria Rogava
Centre for Theoretical Astrophysics
Institute of Theoretical Physics
Ilia State University

1. Introductory heuristics

- 1. The matter accreting onto a compact object will have a significant angular momentum and may form a disc;
- 2. The gas elements in the disc lose angular momentum due to friction between adjacent layers;
- 3. A part of the released gravitational energy increases the kinetic energy gas particles spiral inwards;
- 4. The other part is converted into thermal energy which is being radiated from the disc surfaces;
- 5. Viscosity converts gravitational potential energy into radiation.

Early Studies of disc accretion

- Von Weizsaker: 'The rotation of cosmic gas masses', Z.
 Naturforsch, 3a, 524 (1948)
- Lust: Z. Naturforsch, 7a, 87 (1952)
- Prendergast & Burbridge: 'On the nature of some galactic X-ray sources' Ap.J. Lett., 151, L83 (1968).
- Shakura: Astron. Zh. 49, 921 (1972).
- Pringle & Rees: Astron. Astrophys. 21, 1 (1972).
- Shakura & Sunyaev: Astron. Astrophys. 24, 337 (1973).

Where do they occur?

- Active galaxies
- · Galactic X-ray sources
- Cataclysmic variables
- · Young stellar objects

Basic build-up of the model

- (r, ϕ, z) cylindrical coordinates are used; the z-axis chosen as the axis of rotation: z=0 is the central, equatorial plane of the disc;
- · the disc is assumed to be axisymmetric:

$$\theta_{\phi} = 0$$

· The disc is supposed to be geometrically thin:

the total pressure is the sum of the gas and radiaton pressures:

$$P_{tot} = P_g + P_{rad} = \frac{k}{\mu m_H} \rho T + \frac{a}{3} T^4$$

· the specific internal energy is:

$$\varepsilon = C_V T + \frac{a T^4}{\rho}$$

1. Mass conservation

· The continutiy equation:

$$\partial_t \rho + \frac{1}{r} \partial_r (r \rho v_r) + \partial_z (\rho v_z) = 0$$

After we define the Surface density as:

$$S(r,t) \equiv \int \rho dz$$

leads to:

$$\partial_t S + \frac{1}{r} \partial_r (rSv_r) = 0$$

2. Viscosity tensor

• In the standard disc model it is assumed that the main (only?) nonzero component of the viscosity tensor is:

$$t_{r\varphi} = \eta r \partial_r \left(\frac{v_{\varphi}}{r} \right) = \eta r \frac{d\Omega}{dr}$$

And its vertically averaged value is:

$$W_{r\varphi} \equiv \int t_{r\varphi} dz$$

3. Angular momentum conservation

 From the azimuthal component of the equation of motion, taking into account the continuity equation and integration over z we derive:

$$S\left[\partial_{t}(rv_{\varphi})+v_{r}\partial_{r}(rv_{\varphi})\right]=\frac{1}{r}\partial_{r}\left(r^{2}W_{r\varphi}\right)$$

4. Radial momentum conservation

Initial equation has the form:

$$\rho \left(\partial_{t} v_{r} + v_{r} \partial_{r} v_{r}\right) = \rho \left(\frac{v_{\varphi}^{2}}{r} - \partial_{r} \Phi\right) - \partial_{r} P$$

After z-integration it reduces to:

$$S(\partial_t v_r + v_r \partial_r v_r) = S\left(\frac{v_{\varphi}^2}{r} - \frac{GM}{r^2}\right) - \partial_r W$$

where

$$W \equiv \int P dz$$

5. Energy conservation

Initial equation is:

$$\rho \left(\partial_t + v_r \partial_r\right) \left[\frac{v_r^2}{2} + \frac{v_{\varphi}^2}{2} + h + \Phi \right] = \partial_t P + \frac{1}{r} \partial_r \left(r t_{r\varphi} v_{\varphi} \right) - \partial_z F$$

after integration leading to:

$$S\left(\partial_t + v_r \partial_r\right) \left[\frac{v_r^2}{2} + \frac{v_\varphi^2}{2} + (A+1)\frac{W}{S} + \Phi \right] = \partial_t W + \frac{1}{r} \partial_r \left(rW_{r\varphi}v_\varphi\right) - Q^{-1}$$

- · the last term on the left hand side is the cooling rate
- · Note that the dissipation function is defined as:

$$T \equiv 2t_{r\varphi}\theta_{r\varphi} = t_{r\varphi}r\frac{d\Omega}{dr}$$

and consequently:

$$Q^{+} \equiv \int T dz = W_{r\varphi} r \frac{d\Omega}{dr}$$

is the energy produced per unit area ('heating rate').

6. Vertical hydrostatic balance

· Vertical hydrostatic balance in the disc:

$$\partial_z P = -\rho \frac{GM}{r^2} \frac{z}{r}$$

 from this equation it follows that circular motion in the accreton disc is highly supersonic!

$$z_0 / r \approx c_s / v_{\varphi}$$

- In the standard disc model it is assumed that the energy dissipated into heat is totally radiated in the vertical direction: $\partial_z F = T = t_{r\varphi} r \partial_r \Omega$
- Which, in other words, means exact balance of cooling and heating rates:

$$Q^+ = Q^-$$

7. Keplerian limit

· Keplerian limit

· Circular and angular velocities:

$$v_{\varphi} = r\Omega \qquad \qquad \Omega \equiv \left(\frac{GM}{r^3}\right)^{1/2}$$

· Angular momentum conservation reduces to:

$$\dot{M} \Omega r^2 + 2\pi r^3 \frac{d\Omega}{dr} \int \eta dz = const$$

 In this approximation cooling and heating rates are indeed equal to each other.

8. Steady discs

· Continuity:

$$\dot{M} \equiv -2\pi r S v_r = const$$

· Angular momentum:

$$\dot{M}[I(r) - I(r_0)] = -2\pi r^2 W_{r\varphi} = 3\pi I(r) \int \eta dz$$

 From this equation we find remarkably simple equation for the vertically integrated viscosity coefficient:

$$\int \eta dz = \frac{\dot{M}}{3\pi} \left[1 - \left(\frac{r_0}{r} \right)^{1/2} \right]$$

9. Cooling rate and luminosity

· Cooling rate is equal to:

$$Q^{-} = \frac{3GM\dot{M}}{4\pi r^3} \left[1 - \left(\frac{r_0}{r} \right)^{1/2} \right]$$

· While for the luminosity we calculate:

$$L_D = 2\pi \int_{r_0}^{\infty} Q^{-} r dr = \frac{1}{2} \frac{GM}{r_0 c^2} \dot{M} c^2$$

• It means that half of the potential energy is radiated away. The other half is in the form of kinetic energy situated outside the boundary layer.

10. Standard 'α-model'

- Detailed disc models can be built only if we know the viscosity law!
- · Accretion disc flow is extremely complex:
- (a) Highly supersonic;
- (b) Strongly sheared;
- (c) Radiative;
- (d) Large Reynolds numbers
- Molecular viscosity is not sufficient to generate the intense X-ray emission!
 - $\mathbf{v} = \alpha \mathbf{C}_{s} \mathbf{z}_{0}$ or alternatively: $\mathbf{W}_{r} \phi = \alpha \mathbf{W}$