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« The ideal MHD equations: postulating the basic
equations, assumptions made, scale independence,
what is a physical model?

 Magnetic flux: flux tubes, flux conservation

 Conservation laws: conservation form of the
equations, conserved gquantities

e Discontinuities: shocks and jump conditions, boundary
conditions for interface plasmas

« Model problems: laboratory & astrophysical models

« Applicability issues
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Postulating the basic equations

MHD equations can be introduced by

e averaging the kinetic equations by moment expansion
and closure through transport theory

e just posing them as postulates for a hypothetical
medium called ‘plasma’ and use physical arguments

and mathematical criteria to justify the result.
[ There is nothing suspicious about posing the basic equations. That is
what is actually done with all basic equations in physics. ]

In the second approach, since the MHD equations
describe the motion of a conducting fluid interacting with a
magnetic field, we need to combine Maxwell’'s equations
with the equations of gas dynamics and provide equations
describing the interaction.
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Maxwell’s equations describe evolution of electric field E(r,¢) and magnetic field
B(r,t) in response to current density j(r, ¢) and space charge 7(r, {):

OB
VxE = mrrl (Faraday) (1)
. 1 OE _ .
V X B = pgJ+ T 65 (€opr0) ™2, (Ampére’) (2)
V- E = L : (Poisson) (3)
€0
V-B =0. (no monopoles) (4)
Gas dynamics equations describe evolution of density p(r, t) and pressure p(r, t):
D 9,
D—i +pV.-v = a—i 1+ V- (pv) =0, (mass conservation)  (5)
Dp Op :
I +pV v = > +v -Vp+ypV . -v =0, (eniropy conservation) (6)
where
D 9,
= .V
T

is the Lagrangian time-derivative (moving with the fluid).



The ideal MHD equations
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e Coupling between system described by {E, B} and system described by {p, p}
comes about through equations involving the velocity v(r, ¢) of the fluid:
‘Newton’s’ equation of motion for a fluid element describes the acceleration of a fluid
element by pressure gradient, gravity, and electromagnetic contributions,

D
D_‘tf ~F=-VptpgtjxB 1+ 7E; (momentum conservation)  (7)

‘Ohm’s’ law (for a perfectly conducting moving fluid) expresses that the electric field E/
in a co-moving frame vanishes,

E=EtvxB-0. (Om) (8)
e Equations (1)—(8) are complete, but inconsistent for non-relativistic velocities:
v <L e, ©)

= We need to consider pre-Maxwell equations.



Consequences of pre-Maxwell
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1. Maxwell’s displacement current negligible [O(v?/c?)] for non-relativistic velocities:

DB LB iV x B~ 2 usingEq. @)
indicating length scales by [, and time scales by %, so that v ~ [/.

= Recover original Ampere’s law:

1
j- —VxB. (10)
fo
2. Electrostatic acceleration is also negligible [O(v? /c2)]:
2 2 )
vt B . B .
TIE|~ —— < |jxB|~— [using Egs. (3), (8), (10)].
2 1olo tolo

= Space charge effects may be ignored and Poisson’s law (3) can be dropped.

3. Electric field then becomes a secondary quantity, determined from Eq. (8):
E-—-—vxB. (11)
E|~|v|B

= For non-relativistic MHD, , i.e. O(v/c) smaller than for EM waves.
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e Exploiting these approximations, and eliminating E and j through Egs. (10) and (11),
the basic equations of ideal MHD are recovered in their most compact form.

dp
— () 12
p(—+v-Vv)+Vp—,0g——(V><B)><B:O, (13)
ot 10
dp
E+v-Vp+’ypV-v—O, (14)
B
%—t—Vx(VxB) 0, V-B=0. (15)

= Set of eight nonlinear partial differential equations (PDEs) for the eight variables
p(r,t), v{r,t), p(r,t), and B(r,1).

e The magnetic field equation (15)(b) is to be considered as a initial condition: once
satisfied, it remains satisfied for all later times by virtue of Eq. (15)(a).



Scale independence
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e The MHD equations (12)—(15) can be made dimensionless by means of a choice for
the units of length, mass, and time, based on typical magnitudes [ for length scale,
po for plasma density, and 3, for magnetic field at some representative position. The
unit of time then follows by exploiting the Alfvén speed-

By lq
Vo = Vg = = {hp=—. 24
0 A0 \/m 0 - (24)

¢ By means of this basic triplet [y, By, £y (and derived quantities py and vy), we create
dimensionless independent variables and associated differential operators:

ZEZ/Z(), EEt/to = VEIQV, 8/8551508/(%, (25)
and dimensionless dependent variables:
p=p/po, v=viu, p=p/lpg). B=B/By, g=(/vy)g. (26)

e Barred equations are now identical to unbarred ones (except that 1 is eliminated).

= Ideal MHD equations independent of size of the plasma (l,), magnitude of the
magnetic field (I3,), and density (py), i.e. time scale (l).



Scales of actual plasmas
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ly (m) By (T) to (s)
tokamak 20 3 3x 107°
magnetosphere Earth 4 x 107 3x 107° 6
solar coronal loop 108 3x 1072 15
magnetosphere neutron star ~~ 10° 108 * 1072
accretion disc YSO 1.5 x 10° 10~4 7 x 10°
accretion disc AGN 4 x 1018 1074 2 x 1012
galactic plasma 1021 108 1019

(= 10°ly) (= 3 x 107 y)

* Some recently discovered pulsars, called magnetars, have record
magnetic fields of 10*! T': the plasma Universe is ever expanding!

Note Tokamak: I min (60s) = 20 x 10° crossing times ,
Coronal loop: 1 month (2.6 x 10°s) = 2 x 10° .



A crucial question
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Do the MHD equations (12)—(15) provide a complete model for plasma dynamics?

Answer: NO!
Two most essential elements of a scientific model are still missing, viz.
1. What is the physical problem we want to solve?

2. How does this translate into conditions on the solutions of the PDEs?

This brings in the space and time constraints of the boundary conditions and initial data.
Initial data just amount to prescribing arbitrary functions

pir)[= plr,t=0)], wvir), pf(r), By(r) ondomainofinterest.  (27)

Boundary conditions is a much more involved issue since it implies specification of a
magnetic confinement geometry.

= magnetic flux tubes (Sec.4.2), conservation laws (Sec.4.3), discontinuities (Sec.4.4),
formulation of model problems for laboratory and astrophysical plasmas (Sec.4.5).
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Flux tubes
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e Magnetic flux tubes are the basic magnetic structures that determine which boundary
conditions may be posed on the MHD equations.

@

=

e

e Two different kinds of flux tubes:
(a) closed onto itself, like in thermonuclear fokamak confinement machines,
(b) connecting onto a medium of vastly different physical characteristics so that the
flux tube may be considered as finite and separated from the other medium by suitable
jump conditions, like in coronal flux tubes.



Magnetic flux
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e Magneticfields confining plasmas are essen-
tially tubular structures: The magnetic field
equation

V-B -0 (28) S2

is not compatible with spherical symmetry.
Instead, magnetic flux tubes become the es-
sential constituents.

e Gauss’' theorem:

// V°BdTﬁB'ﬂdO‘// Bl-n1d01+// B; nydoy; =0,
vV S )

Magnetic flux of all field lines through surface element doy is the same as through
arbitrary other element do intersecting that field line bundle.

= = // B - ndo is well defined (29)
S

(does not depend on how S is taken). Also true for smaller subdividing flux tubes!



Conservation form
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e The MHD equations can be brought in conservation form:

0
E(...)+v.(...)_0, (30)

This yields: conservation laws, jump conditions, and powerful numerical algorithms!

e By intricate vector algebra, one obtains the conservation form of the ideal MHD equa-

fions (suppressing gravity): |} From now on, putting
o — 1
op
0
SrV) AV [pvw (p 3BT =BB] =0, p=(y—1ljpe,  (32)
0
— (v +pe +IBH + V- [(pv* + pe+p+ BY)v —v-BB| =0, (33)
at 2 2
0B
EJrv-(VB—BV):O, V-B=0. (34)

It remains to analyze the meaning of the different terms.



Conservation
e Defining

— momentum density . T = PV,

— stress tensor: T=pvv+(p+38°)1—BB,

— total energy density: H = %pvz + ﬁp + %Bz .

— energy flow: U= (%pv2 + 7—’}_/—1p)v + B*v—v-BB,

— (no name): Y =vB — Bv,

yields

op .
e +V.m =0 (conservation of mass),
o .
o +V-T =0 (conservation of momentum),
OH .
N +V . -U=0 (conservation of energy),
oB , .
— +V-Y =0 (conservation of magnetic flux).

ot

r
o m
=
11
i

(35)
(36)

(37)
(38)
(39)
(40)
(41)
(42)

(43)
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Effect of gravity on conservation [=

| Conservation laws, gravity included |

e Including gravity, momentum and energy equation are:

%—: +V-T==pVO  (momentum), (44)
OH
N +V-U=—pv-Vo (energy). (45)
(40)
= work done by gravitational force
e include gravitational potential energy: H, = H | pd and rewrite to
My U+ pvd| = p@_(b (energy) (47)

ot ot
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e Defining — total mass: M = [pdfrj
— total momentum: II = / wdr,
— total energy: H = / Hdr,
— total magnetic flux: V= f B ndo,

gives, by the application of the right BCs (see later):

M = /pdT—/V-ﬂdTgwss—j{ﬂ"ndGO,

FH/#dT—/VonTGaUSS jlngrlBQ Indo,

7= /HdT fv Udr 928 _ j{ ‘ndo =0,

/B nda/Vx (vxB) n 6St0kes'j§ xB-dl=0.

= Total mass, momentum, energy, and flux conserved: the system is closed!

(48)
(49)
(50)
31

(32)
(33)
(54)

(35)



Jump conditions
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Extending the MHD model
e The BCs for plasmas surrounded by a solid wall:

n, v—_0 (on W) = no flow accross the wall,

n, B=20 (on W) = magnetic field lines do not intersect the wall.

Under these conditions, conservation laws apply and the system is closed.

e [or many applications (both in the laboratory and in astrophysics) this is not enough.
One also needs BCs (jump conditions) for plasmas with an internal boundary where
the magnitudes of the plasma variables ‘jump’.

Example: at the photospheric boundary the density changes ~ 1077,

e Such a boundary is a special case of a shock, i.e. an irreversible (entropy-increasing)
transition. In gas dynamics, the Rankine—Hugoniot relations relate the variables of the
subsonic flow downstream the shock with those of the supersonic flow upstream.

We will generalize these relations to MHD, but only to get the right form of the jump
conditions, not to analyze transonic flows (subject for a much later chapter).



Shock formation (1/2)
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e Excite sound waves in a 1D compressible gas (HD): the local perturbations travel with
the sound speed ¢ = +/vp/p.

= Trajectories in the x—t plane (characteristics): dx/dt — +c.

e Now suddenly increase the pressure, so that p changes in a thin layer of width o :

® ®

shocked <8—> unshocked

> X

= ‘CGonverging’ characteristics in the x—t plane.

= Information from different space-time points accumulates, gradients build up until
steady state reached where dissipation and nonlinearities balance =- shock.



Shock formation (2/2)
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e Wihout the non-ideal and nonlinear effects, the characteristics would cross (a).
With those effects, in the limit 0 — 0, the characteristics meet at the shock front (b).

t t

@ A (b) A

shock

C1
> X / > X

= Moving shock front separates two ideal regions.

e Neglecting the thickness of the shock (not the shock itself of course), all there remains
IS to derive jump relations across the infinitesimal layer.

— Limiting cases of the conservation laws at shock fronts.



Deriving jJump conditions
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[ Procedure to derive the jump conditions |

Integrate conservation equations across shock from (1) (undisturbed) to (2)(shocked).

e Only contribution from gradient normal to the front:

. 2of _
;g%f Vid - ~lmnf Sd - n(h-f)=nll.
(56)

e In frame moving with the shock at normal speed « :

Df af of of _ of
(Dt)shock T ey finite < 5y 2 U~ 0
_[rof . af

= %13(1)/1 Edl—u%% 1 (9[ = —u|f]. (57)

e Hence, jump conditions follow from the conservation laws by simply substituting

Vi—=ulfl, 0]/t = —ul[]. (58)



MHD jump conditions...

Conservation of mass,

PNV ov) 0 > —ull -] 0. (59)

Conservation of momentum,

0
S (V) EV - [pvv b (p 3871 = BB~ 0
= —ufpv]+n-[pvv+(p+1iB%)1-BB] 0. (60)

Conservation ot total energy,

9,

(%(va tpet+iB) + V- [(Gpv° +petpt B)v—v-BB| =0

= —ulzv® + s 1B bn-[(gp0* + s p + B)v —v-BB] = 0. (61)
Conservation of magnetic flux,

OB

EJFV (VB —Bv) =0, V-B—-0

— —u|B]+n [vB-Bv|=0, n-|B]=0. (62)
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... In the shock frame
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( MHD jump conditions in the shock frame )

e Simplify jump conditions by transforming to co-moving shock frame, where relative
plasma velocity is v/ = v — un, and split vectors in tangential and normal to shock:

[pv)] =0, (mass) (63)
lovl? 4+ p+ 1B}] =0, (normal momentum) (64)
pvl [vi] = B, [B], (tangential momentum) (65)
poL [3(0)" o) + (Zp + B /pl = Balvi- Bl .  (energy)  (66)
|B.| =0, (normal flux) (67)
pvl [B:/p] = Bn[vi] . (tangential flux) (68)

vil, [pl, 1Bnl

e [Do not use entropy conservation law since shock is entropy-increasing transition:

= 6 relations for the 6 jumps [p], [v.], , [B:] .

not %(;‘)S) -V (pSv)=0 = pv [S]=0, but [S]=[pp] <0. (69)

= This is the only remnant of the dissipative processes in the thin layer.
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Different discontinuities
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(= Two classes of discontinuities: |

(1) Boundary conditions for moving plasma-plasma interfaces, where there is no flow
accross the discontinuity (v, =0) = will continue with this here.

(2) Jump conditions for shocks (v), # 0) = leave for advanced MHD lectures.

(BCs at co-moving interfaces |

e When v, =0, jump conditions (63)—(68) reduce to:

lp+1iB7] =0, (normal momentum) (70)
B,[B] =0, (tangential momentum) (71)
Bplvi-Bid =0,  (energy) (72)
|B.] =0, (normal flux) (73)
B, vy =0. (tangential flux) (74)

e Two possibilities, depending on whether B intersects the interface or not:
(a) Contact discontinuities when B,, = 0 ,

(b) Tangential discontinuities if I3, = 0.



Contact discontinuities

 (a) Contact discontinuities |

For co-moving interfaces with an intersecting magnetic field, 13, # 0, the jump
conditions (70)—(74) only admit a jump of the density (or temperature, or entropy)
whereas all other quantities should be continuous:

—jumping:  [p] #0,
—continuous: v, =0, |vi]=0, |[p|=0, |B,)=0, |B]=0.

Examples: photospheric footpoints of coronal loops where density jumps,
‘divertor’ tokamak plasmas with B intersecting boundary.

(75)

These BCs are most typical for astrophysical plasmas, modelling plasmas with very
different properties of the different spatial regions involved (e.g. close to a star and far
away): difficult! Computing waves in such systems usually requires extreme resolu-
tions to follow the disparate time scales in the problem.

LELVER
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Tangential discontinuities
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( (b) Tangential discontinuities |

For co-moving interfaces with purely tangential magnetic field, B, — 0, the jump
conditions (70)—(74) are much less restrictive:

—jumping:  [p] #0, [vi] #0, [pl#0, [B]#0,

—continuous: v, =0, B,=0, [p1+iB7]=0.

n

(76)

Examples: tokamak plasma separated from wall by tenuous plasma (or ‘vacuum’),
dayside magnetosphere where IMF meets Earth’s dipole.

Plasma—plasma interface BCs by transforming back to lab frame, v, — u = v}, = 0:

n-B=0 (B || interface) , (77)
n-[v]l =0 (normal velocity continuous) , (78)
Ip %BQ]] =0 (total pressure continuous) . (79)

Jumps tangential components, [B;| & |v;|, due to surface current & surface vorticity:

w=Vxv = w=lnigw-oe(dw)=nx]|v]. (81)
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Model problems
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e We are now prepared to formulate complete models for plasma dynamics =
MHD equations | specification of magnetic geometries = appropriate BCs.

e For example, recall two generic magnetic structures: (a) tokamak; (b) coronal loop.

@ ®)

—

=

B T T

e (Generalize this to six model problems, separated in two classes:
= Models I-lll (laboratory plasmas) with tangential discontinuities;
= Models IV-VI (astrophysical plasmas) with contact discontinuities.
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Model |

 Model [: plasma confined inside rigid wall |

e Model I. axisymmetric (2D) plasma contained in a ‘donut’-shaped vessel (tokamak)
which confines the magnetic structure to a finite volume. Vessel + external coils need
to be firmly fixed to the laboratory floor since magnetic forces are huge.

= Plasma—wall, impenetrable wall needs not be conducting (remember why?).

= Boundary conditions are
n-B=0 (atthewall, (82)
n-v=0 (atthe wall). (83)
= just two BGs for 8 variables!

e These BCs guarantee conservation of mass, momentum, energy and magnetic flux:
the system is closed off from the outside world.

e Most widely used simplification: cylindrical version (1D) with symmetry in ¢ and z.

= Non-trivial problem only in the radial direction, therefore: one-dimensional.

LELVER
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( Model II: plasma-vacuum system inside rigid wall |

e Model ll: as |, but plasma separated from wall by vacuum (tokamak with a ‘limiter’).

= Plasma—-vacuum-wall, wall now perfectly conducting (since vacuum in front).

e Vacuum has no density, velocity, current, only B = pre-Maxwell dynamics:

VxB=0, V:-B=0, (84)
. 9B .
VxE--22  V.E-0. (85)
ot

BC at exterior interface (only on B , consistent with ]?); =] §;

n-B=0 (at conducting wall) . (86)

e BCs at interior interface (B not pointing into vacuum and total pressure balance):
n-B-n-B-0 (at plasma—vacuum interface) , (87)
[p+4B% =0 (at plasma—vacuum interface) . (88)

= Consequence (not a BC) is jump in B, i.e. skin current:

j* = n x [B] (at plasma—vacuum interface) . (89)
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Astrophysical plasmas
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Model IV

( Model IV: ‘closed’ coronal magnetic loop |

e |n model IV, the field lines of finite plasma column (coronal loop) are line-tied on both
sides to plasma of such high density (photosphere) that it is effectively immobile.

= Line-tying boundary conditions:
v — 0  (at photospheric end planes) . (92)

= Applies to waves in solar coronal flux tubes, no back-reaction on photosphere:

e In this model, loops are straightened out to 2D configuration (depending on 7 and z).
Also neglecting fanning out of field lines = quasi-1D (finite length cylinder).

r
in
C
&
m
=

=
2
I
O
=
m
=
m
=
=
m
o)
n
=
m
=y



Model V
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( Model V: open coronal magnetic loop |

e In model V, the magnetic field lines of a semi-infinite plasma column are line-tied on
one side t0 a massive plasma.

—> Line-tying boundary condition:
v — 0  (at photospheric end plane) .

= Applies to dynamics in coronal holes, where (fast) solar wind escapes freely:

1973/06/01 1973/06/28 1973/07/26

l-“j '%'é % )

1973/09/17 1973/10/14

e Truly open variants of models IV & V: photospheric excitation (v(Z) # 0 prescribed).



Model VI

( Model VI: Stellar wind |

e In model VI, a plasma is ejected from photosphere of a star and accelerated along the
open magnetic field lines into outer space.
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= Combines closed & open loops (models IV & V), line-tied at dense photosphere,
but stress on outflow rather than waves (requires more advanced discussion).

e Qutput from an actual simulation with the
Versatile Advection code: 2D (axisymm.)
magnetized wind with ‘wind’ and ‘dead’ zone.
Sun at the center, field lines drawn, veloc-
ity vectors, density coloring. Dotted, drawn,
dashed: slow, Alfvén, fast critical surfaces.

[ Keppens & Goedbloed,

Ap. J. 530, 1036 (2000) ]




Basic assumptions/applicability
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( Microscopic definition: |

Plasma is a quasi-neutral gas of charged and neutral particles which exhibits collective
behaviour (Chen).

(a) Long-range collective interactions dominate over binary collisions with neutrals
(b) Length scales large enough that quasi-neutrality (n. =~ Zn;) holds

(c) Sufficiently many particles in a Debye sphere (statistics)
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( Collective behavior

Conditions:
1

QT =—"
O Uth

tokamak: T < 2.4 x 10°s

corona: T < 2x 10%s;

tokamak: Ap = 7x107°m

corona: Ap = 0.07m;

(¢) Np =3mAhn > 1

tokamak: Np = 1.4 x 10°

corona: Np = 1.4 x 10°.
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Basic assumptions/applicability
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So far, only the electric field appeared. (LOCAL)

[ Macroscopic definition: |

For a valid macroscopic model of magnetized plasma dynamical configurations, size,
duration, density, and magnetic field strength should be large enough to establish
fluid behavior and to average out the microscopic phenomena (i.e. collective plasma
oscillations and cyclotron motions of electrons and ions).

Now, the magnetic field enters: (GLOBALY)

@ ™> Q;l ~ B! (time scale longer than inverse cyclotron frequency);

by A> R, ~ B! (length scale larger than cyclotron radius).

(= MHD = magnetohydrodynamics |
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« Macroscopic behaviour, i.e.

|, >> typical microscopic length scales (R, R., %p, ---)
 One single fluid

e.g. cold plasmas: not fully ionised — multi-fluid
* Electrically quasi-neutral, i.e.

|Zn-n | <<n, n, & Ap<<l,
 Non-relativistic speeds:

V<<CcC

« Thermodynamic equilibrium with distribution function
close to Maxwellian, I1.e.
t, >> collision times, |, >> mean free path length

« Equations written in inertial system
(e.qg. rotation: Coriolis and centrifugal forces to be added)



Next: MHD waves & instabilities
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... after the coffee break!



