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e plasma WAVES and INSTABILITIES play an important role. . .

— in the dynamics of plasma perturbations
— in energy conversion and transport
— in the heating & acceleration of plasma

e characteristics (7, A\, amplitude. . .) are determined by the ambient plasma

—> can be exploited as a diagnostic tool for plasma parameters, e.g.

— wave generation, propagation, and dissipation in a confined plasma
= helioseismology (e.g. Gough ‘83)
= MHD spectroscopy (e.g. Goedbioed et al. '93)

— interaction of external waves with (magnetic) plasma structures
= Sunspot seismology (e.g. Thomas et al. ‘82, Bogdan '91)
= AR/ coronal seismology (e.g. Nakariakov et al. 2000)
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 |deal MHD waves: different representations and
reductions of the linearized MHD equations, obtaining
the three main waves, dispersion diagrams

« Phase and group diagrams: propagation of plane
waves and wave packets, asymptotic properties

o Effects of innomogeneity
— Continuous spectra

— Instability

 Resistive MHD spectrum



Cf. sound waves

Perturb the gas dynamic equations (B = 0),

dp

— 0
gt+v< o) =0,
(a—IJrV Vv) +Vp =0,
Ip

B +v-Vp+pV - -v=0,

about infinite, homogeneous gas at rest,

p(r,t) = po+ pilr, 1) (where |p1| < py = const) ,
p(r,t) = po+ pi(r,t) (where [p1| < po = const),

v(r,t) = vi(r,t)  (since vy = 0).

= Linearised equations of gas dynamics:

8p1

V-vi=0,
8{% T pPoV -V
Vi
L Vp =0,
—p1+’YPOV 2=

(D)
(2)
3)

“4)

&)

(6)
(7)
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Cf. sound waves
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( Wave equation |

e FEquation for p; does not couple to the other equations: drop. Remaining equations
give wave equation for sound waves:

E)Qvl

ot?
where
¢ = \/YPo/ po 9)

is the velocity of sound of the background medium.

—EVV.-v; =0, (8)

e Plane wave solutions

vi(r,t) = ) vice! Ty (10)
k
turn the wave equation (8) into an algebraic equation:
(w’l —ckk)-v =0. (11)
e Fork — ke.,the solution is:
ar ==+ke, Uy = Uy, =0, v, arbitrary, (12)

= Sound waves propagating to the right (+4) and to the left (—):
compressible (V - v +#£ 0) and longitudinal (v || k) waves.



Cf. sound waves
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( Counting |

e [here are also other solutions:
w*=0, 0,0, arbitrary, ©,=0, (13)

= incompressible transverse (v, L k) translations. They do not represent interesting
physics, but simply establish completeness of the velocity representation.

e Problem: 1st order system (5)—(7) for p;, v, p1 has 5 degrees of freedom, whereas
2nd order system (8) for v; appears to have 6 degrees of freedom (H? /E)t2 — —w?).
However, the 2nd order system actually only has 4 degrees of freedom, since w? does
not double the number of translations (13). Spurious doubling of the eigenvalue w = 0
happened when we applied the operator 9/t to Eq. (6) to eliminate p;.

e Hence, we /ost one degree of freedom in the reduction to the wave equation in terms
of vi alone. This happened when we dropped Eq. (5) for p;. Inserting vi — 0 in the
original system gives the signature of this lost mode:

wp=0 = w=0, parbitrary, but v—=0 and p—=20. (14)

= entropy wave: perturbation of the density and, hence, of the entropy S = pp~". Like
the translations (13), this mode does not represent important physics but is needed to
account for the degrees of freedom of the different representations.



MHD waves

e Similar analysis for MHD interms of p, v, e ( = %p/p) ,and B :

dp
T v — 0
gt+ (pv) =0,
pa—:+pv~Vv+('y—1)V(pe)+(VB)-B—BoVB:O,
Oe
E—FV'VB—I—(’Y—I)GV'V—O,
0B
e [inearise about plasma at rest, vo =0, po, eg, Bg = const:
8,01
“r V- vy =0
aat +p0 Vi s
Vv
Poa—tl—f—(’}/—1)(80V[)1—|—100V61)—|—(VB1)'BO—BO'VBl:O,
0
%Jr(')/—l)eov'\fl_@,

0B
8_751+B0V‘V1—B0'VV10, V-B; = 0.

(I5)
(16)
(17)

(18)

(19)
(20)
21)

(22)
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MHD waves
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( Transformation |

e Sound and vectorial Alfvén speed,

B
c= 2 p=20 (23)
£0 v L0
and dimensionless variables,
2 - B
= =2 =8 =L (24)
7 Po C Y €o Cr/ o
= linearised MHD equations with coefficients c and b:
95
7%+cv.%—o, 25)
OV . . |
8—¥+cw+cvé+(VB)-b—b.VB_o, (26)
v  Oé -
—4+¢V-v=0, 27
s —1BE " oYX &n
OB ,
—+bV:-v—b-Vv=0, V+B =0. (28)

ot



MHD waves
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[ Symmetry |
e Plane wave solutions, with b and k arbitrary now:
p=plr,t) = pe'™r=0 etc. (29)
yields an algebraic system of eigenvalue equations:
ck-v = Jwp,
kep tkeét(kb-—k-b)B =  wv,
ck-v — % we, (50)
(bk-—b -k)v ~  wB, k-B=0.

= Symmetric eigenvalue problem! (The equations for p, v, ¢, and B appear to know
about each other.) .

e The symmetry of the linearized system is closely related to an analogous property of
the original nonlinear equations: the nonlinear ideal MHD equations are symmetric
hyperbolic partial differential equations.
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MHD waves
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[ Matrix eigenvalue problem |

e Chooseb — (0,0,b), k— (k.,0, /CH) :

[0 kic 0 ke 00 0 0\ [ p) [ ~p
kie 0 0 0 ke kb 0 kib 0, 0,
0 0 0 0 0 0 —kb 0 0y 0y
k”C 0 0 0 /C“C 0 0 0 @Z W @Z
0 kic 0 ke 0 0 0 0 ¢ e
0 —kp 0O 0 0 0 0 0 B, B,
0 0 —kb 0O 0 0 0 0 B, B,
\ 0o kb 0 0o o o o o /)\B) B. )

(31D
— Another representation of the symmetry of linearized MHD equations.

e New features of MHD waves compared to sound: occurrence of Alfvén speed b and
anisotropy expressed by the two components & and £, of the wave vector. We
could compute the dispersion equation from the determinant and study the associated
waves, but we prefer again to exploit the much simpler velocity representation.



MHD waves
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( MHD wave equation |

e Ignoring the magnetic field constraint k - B =0 inthe 8 x & eigenvalue problem (31)
would yield one spurious eigenvalue w — (. This may be seen by operating with the
projector k- onto Eq. (30)(d), which gives wk-B = 0.

e Like inthe gas dynamics problem, a genuine but unimportant marginal entropy mode
is obtained for w = 0 with v =0, p=0,and B = 0:

A

w=0, p=é+p=0, S—=~é——7)A0. (32)

e Both of these marginal modes are eliminated by exploiting the velocity representation.
The perturbations p;, e;, B are expressed in terms of v; by means of Eqgs. (19),
(21), and (22), and substituted into the momentum equation (20). This yields the MHD
wave equation for a homogeneous medium:

82V1
ot?
The sound wave equation (8) is obtained for the special case b = 0.

—[(b- VP I+ +AVV—-b-V(Vb+bV)]| v;=0. (33)



MHD waves
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[ MHD wave equation (cont'd) |

e Inserting plane wave solutions gives the required eigenvalue equation:
{{w'— (k-bP]1=(0*+c)kk +k-bkb+bk)} - v=0, (34)

or, in components:

— kL) =k 0 —kiky? \ (o, 0,
0 —kip* 0 o | ==« o, |- 35
— l@_l@”CQ 0 —/Cﬁc2 @z ﬁz

Hence, a 3 x 3 symmetric matrix equation is obtained in terms of the variable v,
with quadratic eigenvalue w?, corresponding to the original 6 x 6 representation with
eigenvalue w (resulting from elimination of the two marginal modes).

e Determinant yields the dispersion equation:
det = w (W — kifb*) | w' = K2 (07 + &)’ 1 kjk*b*e® | =0 (36)

(where we have artificially included a factor w for the marginal entropy wave).



MHD waves

( Roots |

1) Entropy waves:

w=wg=0,
v=B=0, p=0, but §+£0.
= just perturbation of thermodynamic variables.

2) Alfvén waves:

{?.’J’,‘:@ :BIZBZ:'S}ZZ,}: % By:—"&y?éo_
= transverse v and B so that field lines follow the flow.

3) Fast (1) and Slow (—) magnetoacoustic waves:
Ak2b*c? T+,
2 _ D32 I . 8
w w?f_)k‘(b )[]:l:\/l k(b‘3+c2)2] —5 w{j:wf

Oy=By=8§=0, but 9.,0,,p,B;,B,#0,

= perturbations v and B in the plane through k and B,.

(37)
(38)

(39)
(40)

(41)

(42)
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MHD waves

| Eigenfunctions |

> (2) > (2)

o

s f

Alfvén waves Magnetosonic waves

e Note: the eigenfunctions are mutually orthogonal:
ve Lvy Lvy. (43)

= Arbitrary velocity field may be decomposed at all times (e.g. at ¢ — 0) in the three
MHD waves: the initial value problem is a well-posed problem.
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MHD waves
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(Dispersion diagrams (schematic)] [ exact diagrams in book: Fig. 5.3,
scaling w = (I/b)w, k= kl]

0?2
fast A 7
2 fast
Alfven
Alfven
slow 1 3
slow
> Kk > K|
0 I

e Note: wQ(k:H —=0) = 0 for Alfvén and slow waves = potential onset of instability.

e Asymptotics of w?(k; — o0) characterizes local behavior of the three waves:

[ Bw/OkL >0, Wi o0 for fast waves,
! Ow/OkL=0,  wj— kb’ for Alfvén waves, (44)

. 122
Ow/Ok, <0, w?— kﬁﬁ% for slow waves.
\ C



Phase and group diagrams
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(Phase and group velocity |

Dispersion equation w — w(k) = two fundamental concepts:

1. A single plane wave propagates in the direction of k with the phase velocity
W

Vph =1, n=k/k — (sin?,0,cos ) ; (45)
= MHD waves are non-dispersive (only depend on angle 1%, not on |k| ):
(Vpn)a = bcos¥n, (46)
= i e V1V 2 e 47
(Vph)s,f — §( + & ) — O COS n, o — m y ( )
2. A wave packet propagates with the group velocity
Ow Ow Ow Ow
g == “ma = % =Y AR 48
Vo =g S gpet ar o T ag o] S
= MHD caustics in directions b, and mix of n and t (L n):
(Ver)a = b, (49)
o sin ¥ cos ¥
Var), ¢ = (Uph), ¢ | DL |« (50)
( g)"f (p)"f 2\/1—0008219[]i\/1—crc08279]




 Friedrichs diagrams (schematic) )] [exact diagrams in book: Fig. 5.5,
parameter ¢/b — 3v8, 8 = 2p/B*]

® b2+ c2 ® b2+ c2
f n
A
S bc

b2+ c2
blc > B >;>> | blc > B
:bi‘ — slo7v'v )
slow \ \ Alfvén

rd e

Phase diagram Group diagram
(plane waves) (point disturbances)
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Phase and group diagrams

(Summary |

e [ Entropy waves: non-propagating density / entropy perturbations; |
e Alfvén waves: incompressible velocity perturbations 1 plane of k & B, preferably
propagating || B ;

e [ast magnetoacoustic waves: compressible velocity perturbations in the plane of
k & B, generalization of sound waves with contributions of the magnetic pressure,
propagating in all directions but fastest 1. B ;

e Slow magnetoacoustic waves: compressible velocity perturbations in planeof k & B,
kind of sound waves with impeded propagation L B (orthogonal to fast modes).

[ Connection with next subject |

Group diagram has a much wider applicability than just wave propagation in infinite ho-
mogeneous plasmas: Construction of wave packet involves contributions of large k (small
wavelengths) so that the concept of group velocity is essentially a local one. |t re-
turns in non-linear MHD of inhomogeneous plasmas, where the associated concept of
characteristics describes the propagation of initial data information through the plasma.

Example: point perturbation triggers MHD waves in uniform plasma (friedrichs.qt)
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Finite plasmas
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| Finite homogeneous plasma slab |

a 2
e equilibrium: By = Bye, 0
— with  pg,po, By = const A
— enclosed by plates at © = +a
02
e normal modes: ~ exp(—iwt) » 2
_ -t (DSO A
e plane wave solutions ~ exp(k - T) /\
= k,=ZIn isquantized = = IS _____ % ——————— 0%
>k,
= three MHD waves: FMW, AW, 765432101234567 (n)

SMW

Dispersion diagram «? = «*(k,) for k, and k. fixed
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Finite plasmas

the eigenfunctions are mutually orthogonat.

(x)

=

U, Lvy Ly

arbitrary velocity field may be decomposed in the three waves!

e Remark: for ¢ =0 the FMW is polar-
ized almost perpendicular to B, but in the

o

s,f

> (2) (k, By)-plane

=> corresponds to the direction normal fo the
magnetic flux surfaces in the inhomoge-
neous plasmas discussed below
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Finite plasmas
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fast
2
’(DfO
sl . s o oaa ®2 M2 % --— Alfvén
- (D A A__
sO
/\ islow
———————— ¥ ——————— ®3 3 *
>k,
765432101234567 (n)

(a) Dispersion diagram «* = w*(k,) for k, and k, fixed; (b) Corresponding structure of the spectrum.

e fhe eigenfrequencies are well-ordered.
0§w§§w§0§w§§w§0§w§<oo

=  crucial for spectral theory of MHD waves!



Finite plasmas
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fast
2
’(DfD
& & a & & a &Yoo oa a o aa 2 2 :
6)) M~ % -=— Alfvén
-2 A A__
sO
/\ ‘slow
——————— Y ——————— ﬂ)g mé—x—
>k,
76543210123 4567 (n)

(a) Dispersion diagram «? = w?(k,) for k, and k. fixed; (b) Corresponding structure of the spectrum.

e discrete eigenvalues of the fast subspectrum monotonically increase, so that

we = lim w% ~ lim kZ(b* +c*) = oo is aformal cluster point
s k,—o0

k,—00



Finite plasmas

2
Q)
a ; (b)
A i
A o
fast
2
’(DfO
B R R e s 2 2 - =
>y (D.E. — (DA (DA - Alfvén
s0 T
/ ¢ slow
_______________ 2 2
3 OF 05 ¥
- K

X
765432101234567
(n)

(a) Dispersion diagram «? = w?(k,) for k, and k, fixed,; (b) Corresponding structure of the spectrum.

e The eigenvalues wg of the Alfvén subspectrum are infinitely degenerate, so that

w4 = lim w2 = w? = kjﬁb2
kp—ro0
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Finite plasmas
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/ ¢S|OW
———————— ¥ ——————— 02 w3 *
>k,
76543210123 4567 (n)

(a) Dispersion diagram «*? = w?(k,) for k, and k. fixed, (b) Corresponding structure of the spectrum.

e slow wave subspectrum monotonically decreases with a c/usfer point at

, b2c?
ws = lim w? = kﬁﬁ
k,—oc b +c
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Finite plasmas

e three MHD waves exhibit a strong anisotropy depending on the direction of the wave
vector k with respect to the magnetic field B

® Nres ® NEres

f n
s A
bc
Vb2+ c2
bic 5> B > NADblc 5 g
A
slow ]
slow \ Alfvén
yen fast fast

Friedrichs diagrams: Schematic representation of (a) reciprocal normal surface (or phase diagram) and (b) ray

surface (or group diagram) of the MHD waves (b < ¢).
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Finite plasmas
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=> in the corona the FMWs are the only waves that are able to transfer energy across
the magnetic surfaces

@ Vb2+ c2 @ \V/b2+ c2

f
s A "
bc

Vb2+ c2
bilc > B blc > B

) /

slow )

slow \ Alfvén

7 e

Friedrichs diagrams: Schematic representation of (a) reciprocal normal surface (or phase diagram) and (b) ray

surface (or group diagram) of the MHD waves (b < ¢).



Inhomogeneity
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[ Finite inhomogeneous plasma slab |

o BO — BOy(aj) ey + BOZ(QU) €, pPo— 00(37) y  Po— po(ﬂ’})

e influence of inhomogeneity on the spectrum of MHD waves?
= different k’s couple = wave transformations can occur
(e.g. fast wave character in one place, Alfvén character in another)

= two new phenomena, viz. instabilities and continuous spectra

e wave or spectral equation can be written in terms of
{=e, =&, n=ie - § (=ie| &

= eliminate  and ({ with 2nd and 3rd component (algebraic in 1 and ():

(Hain, Lust, Goedbloed equation)



Inhomogeneity

e the coefficient factor /1) of the ODE plays an important role in the analysis

= may be written in terms of the four w?’s introduced for homogeneous plasmas:

N oo W =~ wi(@)] [w? = wil@) ]
b~ N @) ]| = @)
where
A= R, Wbl = Pl =gy,

b’ +c* ypt B?

wio o) = ka(0® 1+ ) {1 + \/1 — k;{;i}jc;)g }
= only two continuous spectra (2 apparent singularities)
=> the four finite ‘limiting frequencies’ now spread out to a continuous range .
{02} {03} 02— oo
—— - 2 . | F—>» o
° (02) {0g)

2

LELVER

LIFLSHIANN IAINOHLYA



Inhomogeneity

e logarithmic contribution in &-component

= but the dominant (non-square integrable) part of the eigenfunctions:

~ 0, ~z + Mw?) 6(x — za(w?)), ~ 0,
€4 A P (W) d( A(w?)) Ca
1
~ 0, ~ 0, ~ P + Mw?) 8(x — z5(w?)),
{s ns Cs T~ 29(?) (w?) o s(w))
mmmm  continuum
=3 non-monotonic
—»  Sturmian
<+— anti-Sturmian
{@2) {0z} OF =00
— - - — - —
e e e — %] — m?
0
{02) {0F
S - - e iy _ - g /

Schematic structure of the spectrum of an inhomogeneous plasma with gravity.
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Instability

[ Two viewpoints |

e How does one know whether a dynamical system is stable or not?

Wo
W,
Energy W,
Wo

= g
Force — —
- —

F F
stable unstable

e Method: split the non-linear problem in static equilibrium (no flow) and small (linear)
time-dependent perturbations.

e Two approaches: exploiting variational principles involving quadratic forms (energy),
or solving the partial differential equations themselves (forces).
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Instability

[ Aside: nonlinear stability |

e Distinct from linear stability, involves finite amplitude displacements:
(a) system can be linearly stable, nonlinearly unstable;

(b) system can be linearly unstable, nonlinearly stable (e.g. evolving towards
the equilibrium states 1 or 2).

@ (&

2

e Quite relevant for topic of magnetic confinement, but too complicated at this stage.

r
o m
C
1<
m
<

s
>
e
O
=
m
fm
c
=
o)
o
=
m
=



Instability

[ Ideal MHD spectrum |

e Consider normal modes:

E(r,t) = &r)e ™" (24)
= Equation of motion becomes eigenvalue problem:
F(€) — —pw’€. (25)

e For given equilibrium, collection of eigenvalues {w2} is spectrum of ideal MHD.

= Generally both discrete and continuous (‘improper’) eigenvalues.

e The operator p~'F is self-adjoint (for fixed boundary).

2

= The eigenvalues w* are real.

= Same mathematical structure as for quantum mechanics!
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Instability

2
I
o
=
m
m
c
3
p]
(%2}
=
m
=

r
o m
c
A<
m
=

e Since w? real, w itself either real or purely imaginary

= In ideal MHD, only stable waves (w?® > () or exponential instabilities (w? < 0):

(@) ® E A
. ANVaNy
o | o U
i . @© “/
> t

— Crudely, F(&) ~ —¢& forw? > 0 and ~ & forw? < 0 (cf. intuitive picture).



Instability
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 Dissipative MHD |

e In resistive MHD, operators no longer self-adjoint, eigenvalues w

> complex.

= Stable, damped waves and ‘overstable’ modes (= instabilities).

@) A
®) &
-0 -1V c-1v
(b) A
® g

-G t1v G +1v //
[ ]
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Example 1
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....................................

Complete ideal spectrum of
ALFVEN a constant current
cylindrical plasma column

forn=1, m=-2,k=0.1.
Three branches occur: fast
and slow magnetoacoustic
UNSTABLE  and Alfvén waves. Negative
' values of «7 indicate
exponentially growing
instabilities.

1nq [from Kerner 1989]

SQUND




Example 2
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LELVER

MAX = S5.672E-M

MIN-J2 =1 _034E-D1

Nonlinear evolution of an internal kink mode for finite
resistivity n» = 10, (a) Contour plots of the magnetic flux
with a pronounced m = 1 island; (b) longitudinal current J,
as a function of the radius in the plane z = 0 showing a
current sheet at the rational surface q = 1.0.

[from Kerner 1989]



Resistivity

[ Basic equations |

e \We now present the resistive normal mode analysis of the plane slab. Starting
point is the nonlinear resistive MHD equations:

dp
o wm 0)
p(8—¥+v.vv):—vp+pg+jx]3, i=V xB, 21)
, N
o= =V Vp—pV vy =l 22)
OB
EZ—VXE:VX(VXB)—VX(?M). (23)

Resistivity causes Ohmic dissipation term in the pressure equation and resistive
diffusion in the flux equation. The latter completely changes the stability analysis.

e We linearise the equations for perturbations about static equilibrium. Strictly, this
assumption is not justified since resistivity causes magnetic field to decay. However,
the magnetic Reynolds number R,, = jiylov a/n is usually very large so that this is
a very slow process: 7 ~ R,, - T4, Where 74 is the characteristic Alfvén time for
ideal MHD phenomena. The resistive modes grow on the much faster time scale
~ (Rm)”, where 0 < ¥ < 1, so that the equilibrium may be considered static.
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Resistivity
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| Resistive spectrum: surprise |

e Resistivity changes order of system so 0.80 T I I I
that the singularities due to vanishing
coefficient in front of highest derivative
disappear. Hence, one should expect o0 - o R

that the ideal MHD continua split up in
discrete modes. ;

e This is what happens, but in a totally s §
unexpected way: multitude of discrete .
modes on triangular paths appear in .
the complex A = —iw plane.

Im (A)

e Collective effect of ideal MHD continua 0201 e

appears as the damped quasi-mode x
inside triangle. This mode is robust:

damping remains in the limit 77 — 0! 0.00 Lo Loscsocumad
-0.80 -0.60 -0.40 -0.20 0.00 0.20

[Poedts & Kerner, PRL 66, 2871 (1991)] Re (1)
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Conclusions
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« MHD wave and instability theory is mathematically
sound

 Inhomogeneity leads to continuous spectra &
Instabilities

e Other effects, such as
— Dissipation
— Background flow

— Nonlinearity
— Partial ionization, etc.

complicate the MHD wave theory and its
applications, e.g. to the solar corona

* Nevertheless, nice results are obtained, e.g. in coronal
seismology & CME initiation (cf. later this week)
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Conclusions @G

Thank you!



