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In any shearing disk local nonaxisymmetric disturbances evolve toward
a trailing configuration, when there is a decreasing rotation profile
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Evolution of a density wave in
a rotating flow
Anticlockwise rotation

m and k. have the same sign
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Density waves carry angular momentum outward — inertial waves carry angular

momentum inward

Generation of density waves: planets - vortices
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Wave generation: detail




Ring vortex
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Above: initial vorticity X x

perturbation; left: density (6

different times) Note the emergence of the wave (2nd panel) and
the triggering of the global spiral mode.
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Magnetorotational instability
Instability first discussed by Velikhov (1959) and

Chandrasekhar (1961) and applied in the context of disks by
Balbus & Hawley (1991)

e Two fluid elements, are joined by a vertical field line (B,). The
tension in the line is negligible.

e Introducing a perturbation, the line is stretched and develops
tension.
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e The tension reduces the angular momentum of m, and increases

that of m,. This further increases the tension and the process “runs
away”.



Consider the simplest case of a thin disk threaded
by a vertical field

Consider length scales of interest that are small
compared to the disk size

A< h<<r

In this case we can make use of a local analysis
shearing sheet aproximation

We consider a small patch of disk around a reference
radius r.

The patch is corotating with the disk at the reference
position r.

The shearing sheet is based on a first order expansion
and make use a system of local cartesian coordinates



The x, y and z direction are respectively the radial,
azimuthal and vertical direction .

In the analysis that follows we neglect gravity,
so there is no variation of the equilibrium

quantities along z
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Disk center
Ideal MHD equations for the shearing sheet are
, 2
@+v-Vv+2ﬂ XV = £ : lV (p —+ B—) —V(2AQa:2)
ot T dtp p 8m /
Coriolis term Tidal expansion at first

order of gravity +
centrifugal force



The local angular velocity Q and shear rate A are treated
as constant

A:'r'BQ
2 Or

= —3/4Q

We take an incompressible fluid
V:-v=0

Induction equation
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> Fv.-VB—-B: Vv




In equilibrium the velocity field in the shearing sheet
has a linear variation with x

vy = 2Ax

Equilibrium is maintained by the balance of Coriolis force
and tidal term.

Equilibrium magnetic field is uniform and directed along z

We will see that we are interested in values of plasma
p>>1

The sound speed is much larger than the Alfven speed
this justify the incompressibility assumption



Consider axisymmetric modes, i.e. with wavevector
directed along z

It is the simplest case and gives the highest growth
rate

We look for solution of the form

(B,, B,, B,) = be* cos Kz(sin y, —cos v, 0)B, + (0, 0, B,) ,
(v, v, ;) = be* sin Kz(cos y, sin 7, 0, + (0, 24x, 0) .

The field lines lie in fixed vertical planes

AY Eulerian ov

0 ov Perpendicular
to OB

> but Lagrangian
perturbation
parallel




Substituting in the shearing sheet equations
(note that as we will discuss below we don't need to
linearize) we get the following relations

s = —Asin(2y)

Growth rate vanishes for purely azimuthal or purely
radial perturbations, it is maximum for y = z/4

For each pitch angle y we get a wavenumber K
(Kvy)? = —4A (Q + ACOS2'7) sin® ~y

When the perturbation is purely azimuthal, K= 0
The maximum value of K is reached when the perturbation
is purely radial and the growth rate vanishes

—4 AQ
Va

Kmaa: —_



Combining all the equations we get the dispersion
relation

s* + [k2 + 2AKVy)?)s? + (KVL)[(KV L) + 44Q] =0

where k% = 40(+ A)

- . o dS2
Condition for instability e <0
r

Rayleigh criterion angular momentum has to decrease

outward
Magnetorotational instability, angular velocity has to

decrease outward



The unstable modes have a minimum wavelength

- _ 2muy
min = 3o

Increasing the strength of the magnetic field the minimum
wavelength increases (increase of magnetic tension)

For having instability in an accretion disk this minimum
wavelength has to be smaller that the disk height h
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We can observe that the nonlinear terms of the form
a - V-b vanish if we take a single Fourier harmonic and if

V.-a=0
a-Vb=i(k-a)b=20

There is a nonlinearity in the magnetic pressure but
it has no effect in the incompressible dynamics.
The pressure gradient serves only to enforce the
condition V.v=0

The solution above is an exact solution of the
nonlinear equations (Goodman & Xu 1994)
The perturbations grow exponentially even in
the nonlinear regime



If we want to understand the process of angular
momentum transport we need now to understand
how MRI is saturated

We have to use numerical simulations:

Local shearing sheet simulations (we can afford
larger resolution)

Global whole disk simulations (overcome the limitations
of a local analysis, effect of boundary conditions)



The exponential growth of the solutions creates
growing gradients of velocity and magnetic field,
eventually it becomes unstable.

Goodman & Xu (1994) analysis of secondary
instabilities of this growing solution

Two types of instabilities, Kelvin-Helmholtz
and related to tearing

One point to stress is that the essence of
Magnetorotational instability is the angular momentum
Transport..

What we discussed above was

Instability > turbulence > angular momentum transport
Here it is the instability itself that transfers angular
momentum



Local versus global simulations

In a cartesian frame of

reference corotating
with the disk

—
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P Advantages
Higher resolution
Y Longer time
integration
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2D Simulations

We have only axisymmetric modes

Cyclic behavior: quasi periodic transition between two
states

Channel flow
MRI mode
growing exponentially

Magnetic Field Line

B




Channel solution

in correspondence
of peaks of
Maxwell stresses

(Sano & Inutsuka 2001)




Aspect Ratio = 1

Asp. Ratio =4 Asp. Ratio = 8




How efficient is the transport
We can get a measure in terms of an effective a

We have defined a through the definition of an eddy viscosity

v~ oHc,
o can be defined in terms of the r¢ component of the stress tensor
normalized to pressure

When looking at the results of simulations, to get
an efficiency of transport one measure some
average of the r¢ component of the stress tensor
(xy component in the local frame)

BB,
47

< + pvzovy >

What do we get from simulations? Is consistent with what is required by observations?
How a depends on the disk parameters



“Measured” values of o

Numerical simulations of MRI 10-3-10-1
varies with large-scale field, dissipation terms

Protostellar disks 10-2-10-3
based on disk masses, temperatures, accretion

rates, and lifetimes

Cataclysmic variables 10-3-10°

based on models of “dwarf nova” outbursts







Saturation depends on grid scale
when<B>=0'"
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Both the level & the dominant lengthscale of the
turbulence

decrease approximately linearly with the grid scale!

Fromang & Papaloizou (2007)
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Y~ f(RQ, = f(R)Qw.
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