

2292-22

School and Conference on Analytical and Computational Astrophysics

14 - 25 November, 2011

Multiscale and Multiphysics Challenge in Modeling of Space Weather - 2

Giovanni Lapenta Katholic University of Leuven, Centre for Plasma Astrophysics Belgium Centrum voor Plasma-Astrofysica

BOF & GOA (KU Leuven), EC (Swiff, Soteria), NASA (MMS Mission), Intel Exascience Lab. Multiscale and Multiphysics Challenge in Modeling of Space Weather

Giovanni Lapenta

Outline

Meeting the multiscale challenge

- PIC Method
- Implicit PIC
- Moment method

Application to space weather

- Local simulations
- Global simulations

Meeting the multiphysics challenge

- Multi-level simulation
- AMR

Meeting the exascale challenge

- Need for exascale
- Intel Exascience Lab

CHALLENGES IN MODELING SPACE WEATHER: MULTIPLE PHYSICS

TRACE September 2005

LASCO September 2002

IMAGE July 2000

FLUID to KINETIC

Kinetic model: Fundamental Equations

Boltzmann-Maxwell model

Explicit and implicit

EXPLICIT

Operations:

- 1. Solve Newton equations in previous electromagnetic fields
- 2. Solve Maxwell equations with previous particle positions

Stability of a numerical scheme

- Example: A cantilever (springboard)
- A perturbation makes it vibrate, but vibration amplitude does not grow in time
- **Stable system**: when perturbed its vibration amplitude does not grow
- **Unstable system**: when perturbed its vibration do grow

Stability of the explicit scheme: analogy with pendulum

Limits of the explicit kinetic models

Stability of the implicit scheme

Summary of the complete Stability Analysis

KATHOLIEKE UNIVERSITEIT

Numerical Stability Analysis

Explicit stability constraints

Implicit formulation of Vlasov-Maxwell

- Maxwell equations: implicit second order formulation for the field E
- Newton equations: implicit form

$$\psi^{n+\theta} = \theta \psi^{n+1} + (1-\theta) \psi^n$$
• Solvers:
- Coupled
- Non-linear

Example: Electrostatic Implicit Solver

Coupled Equations

 $\mathbf{u}_p^{n+1} = \mathbf{u}_p^n + q_s / m_s \Delta t (\bar{\mathbf{E}}_p + \bar{\mathbf{v}}_p \times \bar{\mathbf{B}}_p)$

$$\mathbf{E}_{g}^{n+1} - \mathbf{E}_{g}^{n} = -\bar{\mathbf{J}}_{g}\Delta t/\epsilon_{0}$$

$$\mathbf{x}_{p}^{n+1} = \mathbf{x}_{p}^{n} + \bar{\mathbf{v}} \Delta t$$
$$\mathbf{J}_{g} = \sum_{p} q_{p} \bar{\mathbf{v}}_{p} W(\mathbf{x}_{g} - \bar{\mathbf{x}}_{p}) / V_{g}$$
$$\mathbf{f}(\mathbf{w}) = \mathbf{0}$$
$$\mathbf{f}(\mathbf{w}^{(k)}) + \frac{\mathbf{f}(\mathbf{w}^{(k)} + \epsilon \delta \mathbf{w}) - \mathbf{f}(\mathbf{w}^{(k)})}{\epsilon} = \mathbf{0}$$

Lapenta, Markidis, PoP, 18, 072101 (2011); Markidis, Lapenta, JCP, 230, 7037 (2011)

Implicit Computational Cycle

Extremely simple program in MATLAB

http://swiff.eu/codes/matlab-ec/

%residual calculation for the EC PIC function res = residueEC(xkrylov)

for it = 1:NT

end

% start computational cycle

% Energy Conserving PIC code

xkrylov = [v0; E0];

% Newton Krylov GMRes solver [sol, it_hist, ierr] = nsolgm(xkrylov, 'residueEC', tol);

v_average = sol(1:N);

% update particle positions and velocities v0 = 2*v_average-v0; x0 = x0 + v_average * DT; % check if particle are out of the periodic boundaries out = (x0 < 0); x0(out) = x0(out) + L; out = (x0 > = L); x0(out) = x0(out)-L; % new electric field

E0 = sol((N + 1): (N + NG));

% calculate the total energy Etot = 0.5 * abs(Q) * sum(v0:2) + 0.5 * sum(E0:2)*dx; % save the total energy histEnergy = [histEnergy Etot]; % end computational cycle % calculate the x at n + 1/2 time level x_average = x0 + xkrylov(1:N) + DT/2; % check if particle are out of the periodic boundaries out = (x_average < 0); x_average(out) = x_average(out) + L; out = (x_average > = L); x_average(out) = x_average(out) -L; % interpolation p = 1:N; p = [p p]; g1 = floor(x_average/dx-.5) + 1; g = [g1;g1 + 1]; fraz1 = 1-abs(x_average(1:N)/dx-g1 + .5); fraz = [(fraz1); 1-fraz1]; out = (g < 1); g(out) = g(out) - NG; mat = sparse(p,g,fraz,N,NG);

res = zeros(N + NG, 1);

% average velocity residual res(1:N,1) = xkrylov(1:N)-v0-.5* mat * QM * (E0 + xkrylov((N+1):(N+NG))) * DT;

% calculate the average J fraz = [(fraz1). * xkrylov(1:N); (1-fraz1). * xkrylov(1:N)]; mat = sparse(p,g,fraz,N,NG); J = full((Q/dx) * sum(mat))';

% electric field residual res((N+1):(N+NG)) = xkrylov((N+1):(N+NG))-E0+J*DT;

Full listing on Markidis, Lapenta, JCP, 230, 7037 (2011)

Exact Energy Conservation Lapenta, Markidis, PoP, 18, 072101 (2011)

2-stream instability

Thermal plasma

Effects of error in energy conservation Lapenta, Markidis, PoP, 18, 072101 (2011)

MPLICIT MOMENT METHOD

J.U. Brackbill et al., JCP, 46, 271, 1982;
G. Lapenta, et al, Phys. Plasmas, 13, 055904, 2006.

IMPLICIT MOMENT

IMPLICIT

Operations needed

Hundreds of particles per cell
Data locality

Local Operations

Implicit moment method

Outline

Meeting the multiscale challenge

- PIC Method
- Implicit PIC
- Moment method

Application to space weather

- Local simulations
- Global simulations

Meeting the multiphysics challenge

- Multi-level simulation
- AMR

Meeting the exascale challenge

- Need for exascale
- Intel Exascience Lab

Wide Applicability iter Plasma Particles Inertial Magnetic confinement confinement 10⁸ fusion fusion Nebula Solar core Temperature (K) 10⁶ Solar согопа Lightning , Solar wind Neon sign 10⁴ Interstellar space Fluorescent light Solids, liquids, Flames Aurora and gases. Too cool and dense for classical plasmas to exist. 10^{2} 10²⁷ 10³³ 10³ 10⁹ 10¹⁵ 10²¹ Moments Number Density (Charged Particles / m³) 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 Sea surface temperature (deg C)

See.

Beyond the State of the ART

Performances of iPIC3D

Scaling Study iPic3D on Pleiades

An example: kinetic simulation of a 3D current layer

3D micro-macro coupling: a typical space weather problem

The 3D Electron Flow

KATHOLIEKE UNIVERSITEIT

Timing considerations for 3D fully kinetic simulations - Implicit vs Explicit

	KAT
Ц	HOLIE
C	KA
\leq	JNIVE
Ц	RSIT
~	E

	Explicit	Implicit	Gain	
Dx	λ_{De} =100 m	d _e =10 Km	100	
Dy	λ_{De} =100 m	d _e =10 Km	100	
Dz	λ_{De} =100 m	d _e =10 Km	100	
Dt	$\omega_{pe}\Delta t=0.1$ or 10^{-5} s	$\omega_{pe}\Delta t$ =100 or 10 ⁻³ s	1000	
Tot			10 ⁹	
Ar th we	An implicit run that takes 1 day would take:			

Outline

Meeting the multiscale challenge

- PIC Method
- Implicit PIC
- Moment method

Application to space weather

- Local simulations
- Global simulations

Meeting the multiphysics challenge

- Multi-level simulation
- AMR

Meeting the exascale challenge

- Need for exascale
- Intel Exascience Lab

Mercury Magnetosphere iPic3D

Reference case: Earth Environment

State of the art now -

CCMC

• Box:

100 R_E x 100 R_E x 100 R_E

- Max load per processor:
 - 16x16x16 cells
 - 144 + 144
 particles per cell(electron populations)
 - 144 +144
 particles per cell (ion populations)
- Coupled with heliospheric models and observations

Scales to be Resolved

State of the Art

Explicit Formulation

- Resolution needed: electrostatic processes at electron scales: 100m (Debye length)
- Cells per dimension: 6,353,000
- Total processors needed:
 6.2600e+16
 - 63 million billions

Moment Implicit Formulation

- Resolution needed: electromagnetic processes at electron scales: 10Km (inertial length)
- Cells per dimension: 63,530
- Total processors needed:
 6.2600e+10
- 63 billions

Adaptive Multiphysics approach

KATHOLIEKE UNIVERSITEIT

Multilevel and Multidomain

Each domain operates at its

Overlapping Multidomain

Interdomain exchanges

- Each domain is an exact replica of the others, but scaled.
- The operations are identical for the same physics module
- Algorithm designed to minimize exchange of information
 - No global operation, all solvers operate on each domain
 - 1D and 2D versions implemented on massively parallel computers

Resolution needed only in small areas

KATHOLIEKE UNIVERSITEIT

Multidomain approach

Coarse Level

- Resolution needed: electromagnetic processes at ion scales: 1000Km
- Cells per dimension:
 635
- Total processors needed:
 6.2600e+04
 - 62 thousand petascale

Finer levels

- Resolution needed: electromagnetic processes at electron scales: 10Km
- Needed only on a thin crust on small surfaces.
- Estimated processors: 1.9812e+06
- Total processors needed: 2 millions - exascale needed but sufficient

Outline

Meeting the multiscale challenge

- PIC Method
- Implicit PIC
- Moment method

Application to space weather

- Local simulations
- Global simulations

Meeting the multiphysics challenge

- Multi-level simulation
- AMR

Meeting the exascale challenge

- Need for exascale
- Intel Exascience Lab

Support at KU Leuven

- First ever EC funded project on space weather
- Involving 16 centers in 13 countries
- Focus on space weather and Earth impact
- Observation (some simulation)

- Multiphysics modelling of space science applied to space weather
- Focus on simulation and theory
- To run till 2014
- Involving 7 centers in 5 countries

- Being negotiated.
- Scheduled to start in march 2012
- Continuation of Soteria with emphasis on space exploration instead of Earth impact.
- Possibility of interaction with Boulder Lunar Science.

SWIFF: Space Weather Integrated Modelling Framework

Space Weather Integrated Forecasting Framework

Coordinator: Giovanni Lapenta Katholieke Universiteit Leuven

Collaborative Project FP7- Space

- Create a mathematical-physical framework to integrate multiple-physics (fluid with kinetic)
- Focus on method and software development, rather than reuse of existing codes
- Physics-based forecasting
- Focus on coupling small-large scales
- Based on implicit methods and AMR

Science Lead	Participant organisation name	Country
Coordinator: G. Lapenta	Katholieke Universiteit Leuven	Belgium
V. Pierrard	Belgian Institute for Space Aeronomy	Belgium
F. Califano	Università di Pisa	Italy
A. Nordlund	Københavns Universitet	Denmark
A. Bemporad	Astronomical Observatory Turin - Istituto Nazionale di Astrofisica	Italy
P. Travnicek	Astronomical Institute, Academy of Sciences of the Czech Republic	Czech Republic
C. Parnell	University of St Andrews	UK

Space Weather and High Performance Computing

ExaScience Lab to Develop Space Weather Prediction as Driver for Intel's Future Exascale Supercomputers •Intel •Imec •Five Flemish Universities

Space Weather and High Performance Computing

Dynamical Exascale Entry Platform Coordinator: Thomas Lippert , Forschungszentrum Juelich GmbH

Large-scale integrating project (IP)

Towards Exascale with application to:

- Detailed brain simulation
- Space Weather
- Climate simulation
- Computational fluid engineering
- High temperature superconductivity
- Seismic imaging

Job: postdoc to develop and test implicit PIC on GPUs

EXASCALE allows to bridge the micro-macro gap by increasing size and resolution by the needed 3 orders of magnitude

Codes and support material

http://www.glapenta.net/

http://swiff.eu/codes/matlab-ec/

http://code.google.com/p/celeste/

http://code.google.com/p/ipic3d/