

2210-7

MedCLIVAR Workshop on: "Scenarios of Mediterranean Climate Change under Increased Radiative Active Gas Concentration and the Role of Aerosols

23 - 25 September 2010

Extreme Mediterranean Cyclone and Wind Events under increasing GHG Climate Forcing

ULBRICH Uwe FU Berlin Germany

Extreme Mediterranean Cyclone and Wind Events Under Increasing GHG Climate Forcing

MedCLIVAR/ICTP workshop September 2010

• Current climate: Cyclone origins and tracks

Cyclones producing extreme winds

Wind track densities

- Validation and signals of some climate models
- Wind storm intensities

CLIMATOLOGY of TRACK DENSITY

Number of cyclones per year (in paretheses)

HMSO (1962): 42% of Med cyclones formed outside basin (from Romem et al., Adv. Geophys., 2007)

CLIMATOLOGY of TRACK DENSITY

Number of cyclones per year , entering vs developing from troughs

Romem et al., Adv. Geophys., 2007

HMSO 1962: **58%** of cyclones enter basin, mainly from Atlantic and from Sahara

Romem et al. (2007): 13% of Med cyclones formed outside,

6% Sahara desert,4% Atlantic ocean,3% Europe

Reasons for difference?

HMSO includes many Sahara cyclones (April, May) Romem et al restricted to October-March NCEP, 1986/7,1991/2, 2001/2, 2002/3, 2003/4

Region of cyclogenesis for cyclones crossing Mediterranean region

Percentage forming outside of the Mediterranean Region: 31% Total crossing Mediterranean: 3513

Identification and tracking of mid-latitude cyclone systems:

Nissen et al., NHESS 2010, based on Murray & Simmonds (1991)

- 1. Identification
 - a) Gridded MSLP field is transformed to a regular 0.75°x0.75° grid by a polar stereographic projection via bicubic spline interpolation
 - b) This grid is scanned for maxima of the quasi-geostrophic relative vorticity via the Laplacian of pressure ($\nabla^2 p$)

$$\xi = \frac{1}{\rho \cdot f} \nabla^2 p$$

c) Iterative search of a pressure minimum in the vicinity of $\nabla^2 p$ d) Removal of systems on basis of specific thresholds

Identification and tracking of mid-latitude cyclone systems:

Nissen et al., NHESS 2010, based on Murray & Simmonds (1991)

- 2. Tracking
 - a) For each identified cyclone a subsequent position and core pressure is predicted by using a *prediction velocity*, which is an average of the velocity deduced from the previous displacement and a geostrophic steering velocity
 - b) Only those tracks were considered in which cyclones have been "closed" and "strong" at least once in their lifetimec) Minimum lifetime is set to 24 h.

Identification of closed and open systems

Pinto et al (2005) Met Z

Closed: T00 (strong), T10 (weak); Open: T01 (strong), T11 (weak)

WIND TRACKING AND CYLONE MATCHING

- Searching for clusters of grid boxes
 where the wind speed exceedes the
 local 98th percentile = EXTEME.
- o Tracking of clusters with nearest neighbour approach (Leckebusch et al. 2010).
- o Minimum thresholds for area and duration
- o Cyclone associated with the wind track is selected from cyclone catalogue (Nissen et al. 2010).

Wind storm Anatol

Berlin

Cyclone causing flooding in Venice

Cyclone track (red), wind-cluster track (blue), MSLP field (isolines in hPa) and exceedance of 98th percentileof wind speed (coloured shading in m/s above local 98th percentile)

18 November 1975 06:00. Green dots: current cyclone core and wind cluster centre.

The total area with wind speeds exceeding the 98th percentile over the 2 day period is shown in gray.

Cyclone track (red), wind-cluster track (blue), MSLP field (isolines in hPa) and exceedance of 98th percentileof wind speed (coloured shading in m/s above local 98th percentile)

Green dots:

current cyclone core and wind cluster centre.

The total area with wind speeds exceeding the 98th percentile over the 2 day period is shown in gray.

Cyclone weak according to MSLP, 2 extreme wind areas

CLIMATOLOGY of TRACK DENSITY

ERA40: 1.125×1.125 October to March, 1957–2002.

TRACK DENSITY of Med. WINDSTORM PRODUCING CYCLONES

WIND TRACK DENSITY

ERA40: 1.125×1.125 October to March, 1957–2002.

DATA

ECHAM5 MPIOM Ensemble

Horizontal resolution: 1.875°x1.875° 3x 20C 1961-2000 3x A1B 2001-2100 3x A2 2001-2100

INGV CMCC Simulation

Horizontal resolution: 0.75°x0.75° 1x 20C 1951-2000 1xA1B 2001-2050

VALIDATION CYCLONES

70N

VALIDATION WIND TRACKS

ERA40

Threshold effected area 2.8x higher due to lower horizontal resolution

INGV CMCC

VALIDATION CYCLONES WITH WIND TRACK in Mediterranean Region

M Berlin

CYCLONE TRACK DENSITY CHANGE 2019-2049 vs. 1969-1999

ECHAM5 A2 ENSEMBLE

Differences in cyclone track density

Note INGV model just to 2049 !

CYCLONE TRACK DENSITY CHANGE 2069-2099 vs. 1969-1999

ECHAM5 A2 ENSEMBLE

Differences in cyclone track density

Cyclogenesis ERA40

Region of cyclogenesis for cyclones crossing the Mediterranean region in events/winter/(deg.lat)²

Cyclogenesis ECHAM5 20C_1

Region of cyclogenesis for cyclones crossing the Mediterranean region in events/winter/(deg.lat)²

Cyclogenesis CLIMATE SIGNAL A1B

Difference A1B_1 (2060-2099) - $20C_1(1960-1999)$ in events/winter/(deg.lat)²

Cyclogenesis CLIMATE SIGNAL A2

Difference A2_1 (2060-2099) - 20C_1(1960-1999) in events/winter/(deg.lat)²

ECHAM5MPIOM 20C_1 1960-1999

Total crossing Mediterranean: 3718

ECHAM5MPIOM A1B_1 2060-2099

Total crossing Mediterranean: 3069

Wind storm producing cyclones ERA40 1960-1999

Total: 1162

Wind storm producing cyclones ECHAM5MPIOM 20C_1 1960-1999

Total: 804

Wind storm producing cyclones ECHAM5MPIOM A1B_1 2060-2099

Total: 646

So far only the frequency of events has been analysed.

How about intensity?

For all wind tracks affecting the Mediterranean region the Storm Severity Index is determined (Leckebusch et al 2008):

$$SSI_{T,K} = \sum_{t}^{T} \sum_{k}^{K} \left[\left(\max(0, \frac{v_{k,t} - v_{percentile}}{v_{percentile}} \right)^{3} * A_{k,t} \right]_{A: \text{ considered time range}}^{T: \text{ considered time range}}$$

Only grid boxes inside the Mediterranean region are considered.

SSI time series

10-year running mean of SSI for Mediterranean region accumulated over the winter season

SSI time series

10-year running mean of SSI for Mediterranean region accumulated over the winter season

Evolution return period of 20-year present-day-climate return value, determined using 40-year running mean

Evolution return period of 20-year present-day-climate return value, determined using 40-year running mean

Conclusions

- Automatic cyclone detection studies can help producing observational climatologies:
- Some 30% of Med. winter cyclones have an origin outside of Med. region
- Models considered are approx. realistic, producing a few more cyclones travelling from the Atlantic
- Climate signals show overall decrease of cyclones and wind storms
- Extreme wind storms seem to vary considerably on a decadal time scale: statistical noise or specific reasons?

Thank you for your attention!