

2210-12

MedCLIVAR Workshop on: "Scenarios of Mediterranean Climate Change under Increased Radiative Active Gas Concentration and the Role of Aerosols

23 - 25 September 2010

An analysis of chemical particles related to the sulfur cycle and the meteorological effects of sulfate aerosols over Europe and the Mediterranean region

CIARLO James and Aquilina Noel University of Malta Department of Physics Maths and Physics Building Msida MSD 2080 MALTA

An Analysis of Chemical Particles related to the Sulfur Cycle and the Meteorological Effects of Sulfate Aerosols over Europe and the Mediterranean Region

James Ciarlo`, Noel Aquilina

University of Malta, Department of Physics

MedCLIVAR Workshop, ICTP, Trieste 23rd – 25th September 2010

Outline

- PRECIS & Physical Parameters
- Why the Mediterranean Basin?
- The Sulfur Cycle & Aerosols
- Aerosol Impacts
- Sulfur Cycle Validation
- Data Analysis
- Atmospheric Sulfur Chemistry
- Conclusions

PRECIS & Physical Parameters

- The PRECIS (Providing REgional Climates for Impact Studies)
 - RCM is driven by the GCM HadAM3P. (Gordon *et al*, 2000)
- Clouds & precipitation
- Radiation includes the seasonal and diurnal cycles of solar radiation
- Land Surface characteristics are prescribed according to climatological surface types
- Surface exchanges
 - Land surface scheme is MOSES (Met Office Surface Exchange Scheme). (Cox *et al*, 1999)

Why the Mediterranean Basin?

- Enclosed by 3 major continents.
- Surrounded almost entirely by mountains.
- Very unique and sensitive to climate changes.
- Simulation details
 - GCM-HadAM3P-150km
 - PRECIS (v 1.7.2) used
 - 1960–1990 (1-year spin up)
 - Resolution: 0.44° x 0.44°
 - 100 cells x (50 km x 50 km)
 - <u>57</u>°N−18°N, 16°W−46°E

The Sulfur Cycle & Aerosols

	Mode	Diameter (µm)	Lifetime	Removal Process	
	Nucleation	< 0.01	Minutes-Hours	Coagulation	
	Aitken	0.01-0.1	Hours-Days	Coagulation	
	Accumulation	0.1-1	Weeks	Nucleation	
	Coarse	1-10	Hours-Days	Gravitation	
	Giant	>10	Hours-Days	Gravitation	

- The Sulfur Cycle is based 5 variables:
 - SO_2 , DMS and 3 modes of SO_4^{2-} (1 dissolved & 2 free modes)
- Model simulates transport of above, via <u>horizontal and</u> <u>vertical advection</u>, <u>convection</u> and <u>turbulent mixing</u>
- Aerosols act as CCN

Increase in aerosol causes climate impacts

Aerosol Impacts

- With increasing aerosol activity:
- Direct: Scattering effect
 - Decreased: SW, Skin T
- Indirect: Cloud albedo (Twomey) effect
 - Decreased: Diurnal Temperature Range (DTR)
- Indirect: Cloud lifetime effect
 - Decreased: Precipitation, DTR

Aerosol Impacts within the PRECIS output:

- Studied through correlation between aerosolsensitive parameters.
- Direct effect:
 - Correlations between 0.60-0.82
- Indirect effects:
 - Correlations between 0.18-0.82
 - Complex interactions
 - Cannot isolate Cloud albedo effect from the Twomey

Effect		Correlation
Indirect	Diss v Skin T	-0.77
Indirect	Diss v SW	-0.82
Indirect	SW v DTR	0.50
Indirect	CLW v DTR	-0.59
Indirect	Diss v CLW	0.39
Indirect	CLW v SW	-0.28
Indirect	Diss v DTR	-0.40
Cloud lifetime	Diss v PPN	0.43
Cloud lifetime	CLW v PPN	0.18
Indirect	CLW v LW	-0.26
Indirect	Diss v LW	-0.60
Indirect	LW v DTR	0.47

Statistics of Parameters

Parameter	Correlation	Average Bias	Max Bias	Min Bias
Conv PPN (x10 ⁻⁶)	0.47	-3.08	-1.48	-5.80
DTR	-0.11	-1.98	-0.32	-3.52
Net LW	0.48	1.01	3.77	-1.37
Net SW	0.59	-10.45	-6.99	-15.63
RH	0.43	-5.46	-3.01	-8.38
Surface T	0.13	0.82	1.59	0.05

- Bias of Conv PPN, DTR, Net LW, Net SW, RH:
 - Suggest SO₄²⁻ over-prediction
- Bias of Surface Temperature:
 - Possible result of Net LW over-prediction

Atmospheric Sulfur Chemistry

- PRECIS
 - STOCHEM Model
 - UK Meteorological Office Global Three-Dimensional Lagrangian
- Bacterial Reduction of Sulfate: SO₄²⁻ + H⁺ + 2CH₂O → HS⁻ + 2H₂O + 2CO₂

 Gaseous Oxidation of Sulfide: (Andreae *et al*, 2008) 2H₂S + 3O₂ → 2SO₂ + 2H₂O

 Oxidation of DMS: (Norris, 2003)

 $CH_3SCH_3 + HO \rightarrow SO_2$ (unbalanced)

Atmospheric Sulfur Chemistry

- Ammonic Oxidation of Sulfur Dioxide: NH₃ + SO₂ + H₂O → NH₄⁺ + HSO₃⁻
 Gaseous Oxidation of Sulfur Dioxide: (Harrison, 1999)
 - $\text{HO} \bullet + \text{SO}_2 \to \text{HSO}_3 \bullet \xrightarrow{02} \text{SO}_3 + \text{HO}_2 \bullet \xrightarrow{\text{H2O}} \text{H}_2\text{SO}_4$
- Aqueous oxidation Sulfur (IV) compounds:

 $\{O\} + \{S\} \rightarrow 2H^+ + SO_4^{2-}$ (unbalanced)

•
$$\{O\} = H_2O_2, HO_1, O_3, O_2$$

• $\{S\} = SO_2, HSO_3^-, SO_3^{2-}$

• Aqueous Oxidation of SO₂ via H_2O_2 : SO₂ + $H_2O_2 \rightarrow SO_3 + H_2O \rightarrow H_2SO_4$

Chemistry Module

- PRECIS yearly average concentrations:
 - HO• constant.
 - HO• causes no variation in DMS and SO₂ oxidation
- Using Pearson Correlation:
 - SO₂ is correlated to dissolved SO₄²⁻
 - DMS is negatively correlated to dissolved SO₄²⁻
 - H₂O₂ is negatively correlated to Aitken & accumulation SO₄²⁻
 - Aitken is correlated to accumulation SO₄²⁻
 - Accumulation is correlated to dissolved SO₄²⁻

[All correlations are statistically significant (p<0.01), except the first, which is p<0.05]

Conclusions

- Sulfur Cycle Validation:
 - Direct: High evidence
 - Indirect: Varying evidence
- Results suggest problems with the Sulfur cycle:
 - Possible over-estimation of SO₄²⁻ concentrations
- $^\circ~$ Correlation of SO_4 $^{2-}$ and H_2O_2 shows the SO_2 to H_2O_2 reaction is the most important within PRECIS
- Correlations show evidence of conversion between:
 - Aitken and accumulation SO₄²⁻;
 - Accumulation and dissolved SO₄²⁻;
 - DMS and dissolved SO₄²⁻;

- Negative correlation of DMS not yet understood
- SO₂ and dissolved SO₄²⁻
- More detailed chemical analysis is needed within PRECIS.

Further Work

References

- Harrison R.M. (1999). Understanding Our Environment. An Introduction to Environmental Chemistry and Pollution. Third Edition.
- Andreae M.O; Jaeschke W.A. (2008). Northern Arizona University. Atmospheric Reactions of Sulfur and Nitrogen. Available online: http://jan.ucc.nau.edu/ ~doetqpp/courses/env440/env440_2/lectures/lec37/ lec37.htm, last accessed 10th September 2010.
- Norris K. B. (2003). Dimethylsulfide Emission: Climate Control by Marine Algae? Available online: http:// www.csa.com/discoveryguides/dimethyl/overview.php, last accessed 10th September 2010.

Acknowledgements

Norbert Bonnici Adam Gauci Pierre-Sandre Farrugia Louis Zammit Mangion

Simon Tucker Chloe Morrell David Hein David Hassell http://precis.metoffice.com/

UK Air Quality Archive

Earth System Research Laboratory Physical Sciences Division

Department for International

elopment

Thank you for your attention

James Ciarlo`

jcia0004@um.edu.mt Noel Aquilina noel.aquilina@um.edu.mt +356 2340 3036

What is PRECIS?

- It is an Atmospheric and LSM of limited area.
- The model is described in 3 units:
 - The dynamics
 - The physical parameterizations
 - The Sulfur cycle

Boundary Conditions

- Model requires surface boundary conditions from surface temperatures and ice extents.
- Dynamical atmospheric information at the boundary of the model's domain are obtained from the LBCs which include
 - standard atmospheric variables of surface pressure
 - horizontal wind components

- atmospheric temperature and humidity measures
- LBCs are updated every 6 hours of the model simulation time.
 - Surface boundary conditions are updated every day.

Sulfate Abundance:

- 1. Aitken
- 2. Accumulation
- 3. Dissolved

• <u>Aerosol-sensitive parameters</u>

Effect		Correlation	Expected Relationship
Direct	Aitken v SW	-0.76	Negative
Direct	Accum v SW	-0.82	Negative
Direct	SW v Skin T	0.69	Positive
Direct	Aitken v Skin T	-0.60	Negative
Direct	Accum v Skin T	-0.64	Negative

Direct Effect

- Strong correlations
- Expected relationships
- Strong evidence of effect

Aerosol-sensitive parameters

Indirect Effects:

- Low detectability of effect
- Expected due to complex interactions
- "Incorrect" correlations:
 - Model errors?

			Fynected
Effect		Correlation	Relationship
Indirect	Diss v Skin T	-0.77	Negative
Indirect	Diss v SW	-0.82	Negative
Indirect	SW v DTR	0.50	Positive
Indirect	CLW v DTR	-0.59	Negative
Indirect	Diss v CLW	0.39	Positive
Indirect	CLW v SW	-0.28	Negative
Indirect	Diss v DTR	-0.40	Negative
Cloud lifetime	Diss v PPN	0.43	Negative
Cloud lifetime	CLW v PPN	0.18	Negative
Indirect	CLW v LW	-0.26	Positive
Indirect	Diss v LW	-0.60	Positive
Indirect	LW v DTR	0.47	Negative

Effect		Correlation	Expected Relationship
Indirect	CLW v LW	-0.26	Negative
Indirect	Diss v LW	-0.60	Negative
Indirect	LW v DTR	0.47	Positive

<u>Consider a cloud with dissolved aerosol</u> Influenced by the indirect effect (↑ CLW/thickness/albedo)

SO4 aerosol: dissolved mode - 1965

Cloud Liquid Water - 1965

Atmospheric Sulfur Chemistry

Atmospheric Sulfur Compounds and Sources:

- Sulfates (SO₄²⁻): sea spray (salts), dust (rocks)
- Sulfur dioxide (SO₂): volcanoes, combustion
- Hydrogen Sulfide (H₂S): bacterial reduction
- Dimethyl Sulfide (DMS): marine phytoplankton
- \blacktriangleright SO₂ is the most abundant.

Atmospheric Sulfur Chemistry

 Aqueous oxidation Sulfur (IV) compounds: {O} + {S} → 2H⁺ + SO₄²⁻ (unbalanced)
 {O} = H₂O₂, HO•, O₃, O₂
 {S} = SO₂, HSO₃⁻, SO₃²⁻

$$SO_{2} + H_{2}O_{2} \rightarrow SO_{3} + H_{2}O \rightarrow H_{2}SO_{4}$$

$$SO_{2} + O_{3} \rightarrow SO_{3} + O_{2} \rightarrow H_{2}SO_{4} \text{ (unbalanced)}$$

$$2SO_{2} + O_{2} + 2H_{2}O \rightarrow 2H_{2}SO_{4}$$

$$HSO_{3}^{-} + H_{2}O_{2} \rightarrow HSO_{4}^{-} \text{ (unbalanced)}$$

$$SO_{3}^{2-} + O_{3} \rightarrow SO_{4}^{2-} + O_{2}$$

Chemical Correlation

Correlations

		SO2	SO4Ait	SO4Acc	SO4Dis	H2O2	DMS
SO2	Pearson Correlation	1	.144	105	.413 [*]	.147	070
	Sig. (2-tailed)		.456	.586	.026	.445	.718
	Ν	29	29	29	29	29	29
SO4Ait	Pearson Correlation	.144	1	.542**	125	564**	.358
	Sig. (2-tailed)	.456		.002	.518	.001	.057
	Ν	29	29	29	29	29	29
SO4Acc	Pearson Correlation	105	.542**	1	.493**	521**	165
	Sig. (2-tailed)	.586	.002		.007	.004	.392
	Ν	29	29	29	29	29	29
SO4Dis	Pearson Correlation	.413*	125	.493**	1	017	532**
	Sig. (2-tailed)	.026	.518	.007		.930	.003
	Ν	29	29	29	29	29	29
H2O2	Pearson Correlation	.147	564**	521**	017	1	028
	Sig. (2-tailed)	.445	.001	.004	.930		.887
	Ν	29	29	29	29	29	29
DMS	Pearson Correlation	070	.358	165	532**	028	1
	Sig. (2-tailed)	.718	.057	.392	.003	.887	
	Ν	29	29	29	29	29	29

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

Future Scenarios

Scenario	Focus
A2	Slow technological change
B2	Sustainability: economy, society, environment
A1B	Efficient technology; Non/Fossil balance

SO4 Aitken: 1981

SO4 Aitken: 2081 B2

Future Scenarios

2070-2100 B2 Aitken Annual Anomaly Field

Future Scenarios

2070-2100 B2 SW Annual Anomaly Field

