

2210-17

MedCLIVAR Workshop on: "Scenarios of Mediterranean Climate Change under Increased Radiative Active Gas Concentration and the Role of Aerosols

23 - 25 September 2010

Mediterranean Sea Heat Budget: observed estimates, present-climate model evaluation and climate change scenarios

SOMOT Samuel J., Dubois C. and Romanou A.

Meteo-France Centre National de Recherches Meteorologiques Cnrm/Gmgec/Udc, 42 Avenue Coriolis 31057 CEDEX 1 Toulouse FRANCE

Mediterranean Sea Heat Budget: observed estimates, present-climate model evaluation and climate change scenarios

Samuel Somot (Météo-France, CNRM, NASA-GISS) Clotilde Dubois, CNRM Anastasia Romanou, NASA-GISS, Univ. Columbia

special thanks to E.SanchezGomez, A.Alias, S.Calmanti, B.Decharme, M.Déqué, M.P.Moine, F.Sevault, B.Rossow, Y.Zhang, P.Stackhouse, L.Yu, S.Josey, B.Nardelli, F.Orain, Bentamy, M. Rixen, D.Pettenuzzo, N.Pinardi, L.Brunault, CORIOLIS data center, ENSEMBLES modellers, CIRCE modellers

Regional climate system models for Mediterranean climate study

ALADIN-Climat v5 (ERA40, ERAInterim, GCM forcing) 50 km

(Déqué and Somot, 2008; Colin et al. 2010)

340

40.

10W

0E

10E Longitude

Beuvier et al. 2010)

TRIP river routine scheme at 50 km

First simulation:

B.Decharme, pers.comm.)

following Somot, 2005, Li et al. 2006, Somot et al. 2008, Artale et al. 2009

30E

Towards a regional climate system model (RCSM) intercomparison: HyMeX & MedCORDEX (www.hymex.org)

Nine different centres planned to design and use RCSM for the Mediterranean area in the next years (MedCORDEX, HyMeX-TTM3): ENEA-ICTP, IC3, LMD, LATMOS, CNRM, UCLM, Univ of Belgrade, MPI, COSMO-consortium

How to validate this new models ?
How to prove their added-value wrt ARCM or ORCM ?
How to compare them in present climate and future climate ?

-Wind over sea: Sotillo et al. 2005, Ruti et al. 2007, Herrmann et al. (in prep) -Med Sea Water Budget (E-P-R-B): Sanchez-Gomez et al. 2009, Elguindi et al. 2010, Aznar et al. 2010, SanchezGomez et al. (in revision), Josey et al. (submitted)

Let's start with the Med Sea Heat Budget ...

Why to study the Mediterranean Sea Heat Budget (MSHB)

- Basin integrated process depending on complex local processes and different time and spatial scales
- Challenge for the regional climate modelling community (highly variable in space and time, sensitive to extremes, ocean-atmosphere coupling)
- Test-bed for the ocean-atmosphere regional coupled models
- Driver of the Med Sea thermohaline circulation
- Impacted by climate change
- Direct and indirect MSHB estimates are available (closure hypothesis at the Gibraltar Strait)

Requirements to study the MSHB

- High-resolution required
- Ocean-atmosphere interaction
- Interannual and long-term variability taken into account

Goals of the current study

- Estimate the MSHB terms from observations (in-situ, satellite)
- Evaluation of the MSHB of reanalyses, coupled and non-coupled RCMs, intercomparison
- First step towards an improvement of the MSHB in RCMs
- Climate change scenarios with coupled RCMs (CIRCE project)

Principle

- Focus on the 1989-2001 period for the estimation and evaluation
- Climate change scenario for 1950-2050, SRES-A1B, CIRCE models

- Macdonald et al. 1994: +5.2 \pm 1.3 W/m2
- Beuvier et al. 2010 (Med Sea model, 1989-2001): +5.8 W/m2

dTHC/dt:

- Rixen et al. 2005: +0.2 W/m2
- CORA2.2: too short
- Beuvier et al. 2010 (Med Sea model, 1989-2001): +2.2 W/m2

Indirect estimate for the surface MSHB: Maximum range [-10 ; -1] W/m2

SWdown + SWup + LWdown + LWup + LH + SH + GHT = dTHC/dt

SW:

- radiation + cloud + albedo + aerosols + gaz
- ISCCP-FD2, SRB-OSW, SRB-QCSW, NOCS, AJONC

strange time series

too short, no direct aerosol effect

LW:

- radiation + cloud + vertical profile of humidity and temperature + GHG

- ISCCP-FD2, SRB-GSW, SRB-QCSW, NOCS, RSST Olv2, ENEA-OISST Low resolution

Breaks in the time series

Verv low values

LH, SH:

- humidity + atmo temperature + SST + wind + bulk formula
- OAFLUX, NOCS, HOAPS-G, IFREMER

Pb with the spatial coverage

Pb with coastal points

Other key points:

- Land-sea mask, horizontal resolution, length, mixed sealand points

W/m2	SW	LW	SH	LH	MSHB	Indirect
Obs Range	[178;186]	[-77;-84]	[-6;-13]	-89	[-8;-1]	[-10;-1]
NOCS (1°) *	185	-84	-6	-89	(+6)	
ISCCP-FD2 (2.5°)	186	Х				
SRB-QC (1°)	178	Х				
SRB-GEWEX (1°) **	X	-77				
AJONC (0.1°)	X					
OAFLUX (1°)			-13	-89		
IFREMER (0.5°)			x	х		
HOAPS (0.5°)			х	х		

* NOC1.1 Mediterranean Sea version (S.Josey, see Sanchez-Gomez et al., in revision) ** LWup: OISST from ENEA (daily, 10km), -418 W/m2 (OI RSST: -419 W/m2)

Mean seasonal cycle

Interannual variability 1989-2001

Data to evaluate: 1989-2001

Dataset to evaluate

- ERA40, ERAInterim
- INGV, ERA40 adjustment or Statistical Downscaling, Pettenuzzo et al. 2010
- HIPOCAS, Dynamical Downscaling of NCEP, Sotillo et al. 2005 (not included)
- ARPERA, Dynamical Downscaling of ERA40, *Herrmann and Somot, 2008, Beuvier et al. 2010*

W/m2	SW	LW	SH	LH	MSHB	
Range	[178;186]	[-77;-84]	[-6;-13]	-89	[-8;-1]	
ERA40	167	-80	-9	-93	-15	
ERAInterim	198	-83	-11	-95	+9	
INGV-SDS-ERA40	180	-80	-14	-91	-5	
CNRM-DDS-ERA40	187	-79	-12	-110	-13	

Data to evaluate: 1989-2001

Mean seasonal cycle

Data to evaluate: 1989-2001

Interannual variability 1989-2001

RCMs to evaluate

Regional climate modelling tools

- **ENSEMBLES ARCMs,** 15 models, 25km, ERA40 driven (available on 1989-2001), also see Sanchez-Gomez et al. 2009 and Sanchez-Gomez et al. (in revision)

KNMI (the best ENSEMBLES RCMs when forced by ERA40)

MPI (REMO)

ICTP (RegCM)

CNRM (ALADIN)

- CIRCE-HyMeX AOR-RCMs or RCSM (Regional Climate System Models), 30-50km, ERA40 driven (available on 1989-2001)

LMD (LMDZ/NEMOMED8)

MPI (REMO/MPIOM/River)

ENEA (PROTHEUS: RegCM/MITgcm/IRIS)

CNRM (ALADIN/NEMOMED8/TRIP)

(AOR)RCMs to evaluate (1989-2001)

W/m2	SW	LW	SH	LH	MSHB			
Range	[178;186]	[-77;-84]	[-6;-13]	-89	[-8;-1]	OBS		
ENSEMBLES RCMs								
KNMI (best RCM) 165 -77 -11 -88 -11 ENS								
MPI	163	-91	-9	-83	-20	ENS		
ICTP	187	-75	-21	-127	-36	ENS		
CNRM (v4.5)	190	-80	-9	-91	+10	ENS		
CIRCE RCSMs								
LMD	208	-96	-14	-102	-4	CIRCE		
MPI	154	Missing LWup	-10	-80	x	CIRCE		
ENEA	201	-81	-20	-93 Pro	blem x	CIRCE		
CNRM (v5.1)	199	-81	-11	-109	-2	HYMEX		

RCMs to evaluate: ENSEMBLES

Mean seasonal cycle

RCMs to evaluate: ENSEMBLES

Interannual variability 1989-2001

RCMs to evaluate: CIRCE

Mean seasonal cycle

RCMs to evaluate: CIRCE

Interannual variability 1989-2001

Tests with ALADIN-Climate: 1989-2001

Working on improving the MSHB of ALADINv5.1

(HyMeX version but not the same as in ENSEMBLES)

- ALADIN vs ALADIN/NEMOMED8/TRIP
- ERA40 vs ERAInterim
- Use of the spectral nudging
- 50 and 12 km
- Change in the parameterizations:

Radiative code: RRTM vs FMR15 Bulk formula: ECUME vs Louis 1979 Prognostic physics vs diagnostic (TKE, water) others (to be done)

Tests with ALADIN-Climate 1989-2001: MED50

W/m2	SW	LW	SH	LH	MSHB	
Obs range	[178;186]	[-77;-84]	[-6;-13]	-89	[-8;-1]	
MED50-ERA40 (M15)	196	-81	-11	-109	-5	REF
MED50-ERA40-SN (M16)	195	-81	-12	-119	-17	SN
MED50-ERA40-AOR (CBNT2)	199	-81	-11	-109	-2	AOR
MED50 – ERAI (M10)	197	-81	-12	-104	0	ERAI
MED50 – ERAI - ECUME (M11)	200	-86	-13	-88	+13	ECUME
MED50 – ERAI - RRTM (M12)	199	-81	-8	-104	+6	RRTM
MED50 – ERAI – PROG (M13)	196	-85	-13	-104	-6	PROG
MED12 – ERAI (MB1)	202	-85	-10	-111	-4	12km

Tests with ALADIN-Climate

Conclusion on the evaluation

Conclusion :

-Observations: problem with SH in NOCS (personal feeling), satellite data not always homogeneous in time, still big problem and large range of uncertainty (178;186 W/m2 for SW and -84;-77 W/m2 for LW), but we closed the budget with surface in-situ and satellite data (for the first time ?!)

-Reanalyse: problem with the SW due to cloud cover

-SDS et DDS: Pettenuzzo's data agree well, ARPERA: problem with the LH term -ARCM: no one perfect, large spread

-RCSM: always a good MSHB (but the components and SST)

-ALADIN tests: ERAInterim forcing and the new bulk formulae improve LH

-No positive impact of SN, RRTM, 12km, Prognostic physics, coupling

Advices:

-For observations and satellites: Higher resolution, better taking into account the land-sea contrast, check and remove breaks

-For SDS: better check the reference data, more complex correction (quantile) -For modellers, careful look at the air-sea fluxes, check in non-coupled and coupled mode, work on the parameterizations

-For the rest of the community: help us for validation and valorisation (ENSEMBLES, HyMeX, MedCORDEX, MedCLIVAR databases)

Climate change scenario

ENSEMBLES runs: A1B, 1950-2100, 13 models:

Most of the ENSEMBLES RCMs lead to an increased cooling of the Med Sea by the air-sea fluxes along the 21st century (The RCMs react to the SST increase). The design RCM+forcing by SST is not adapted to the study of the MSHB under climate change as, in reality, the SST reacts to the atmosphere warming and not the opposite

<u>CIRCE runs: A1B, 1950-2050, ENEA, INGV, MPI, CNRM, LMDZglo, (LMDZreg)</u> The 5 models give a qualitatively similar response between the period 2021-2050 and the period 1961-1990 with:

- an increase in SW heat gain: less cloud as Med area dries.
- a decrease in the LW loss: the GHG effect wins against the SST increase

- a decrease in the SH loss: the air-sea temperature gradient decrease as the land and the atmosphere warms faster that the ocean (land-sea contrast increase). And wind decrease.

- an increase in the LH heat loss: increase of the humidity gradient as the atmosphere can contain more humidity with a warmer SST and the Med area becomes drier.

Finally the surface net heat loss decreases during the 21st century leading to a weaker cooling of the ocean by the atmosphere or even a warming

Toujours un temps d'avance

Climate change scenario

Difference 2021-2050 vs 1961-1990, A1B	SW	LW	SH	LH	MSHB	
Ensemble Mean	+2.2	+1.9	+1.5	-2.5	+3.1	
ENEA	+2.3	+1.7	+0.9	-3.0	+1.9	
INGV	+1.5	+1.8	+1.5	-2.0	+2.8	
MPI	+0.8	+1.2	+0.9	-0.8	+2.1	
CNRM	+2.4	+1.9	+0.7	-3.4	+1.6	
LMDZglo	+2.6	+2.8	+2.9	-2.8	+5.5	

Climate change scenario

Sensible flux

1990 2000 2010 2020 2030 2040 2050

1950 1960

1970 1980

Towards a regional climate system model intercomparison: HyMeX MedCORDEX (www.hymex.org)

To register, just send an email to hymex-TTM3@cnrm.meteo.fr

Examples: Med Sea Heat Budget

ISCCP-D2 cloud fraction dataset for SW flux in Summer (W/m2) Christensen et al. 2010, accepted

Forcing for a Med Sea Model

Surface fluxes (see also talk by E. Tragou):

T evolution: $\frac{\partial T}{\partial t} \propto \frac{Q}{\rho C_n}$ $\frac{\partial S}{\partial t} \propto \frac{(E - P - R)}{h}.S$ $Q = Q_{SW} + Q_{IW} + Q_{S} + Q_{I}$ E: evaporation from Q_{μ} Q_{SW} : from the radiative scheme of the P: precipitation atmosphere model + albedo R: river + Black Sea downward (atm. model radiative) Q_{IW}: upward : $\varepsilon . q . T_o^4$ $\frac{\partial \vec{V}}{\partial t} \propto \frac{rot(\vec{\tau})}{2}$ Q_s = sensible heat flux dt $-\rho_a.C_p.C_S(u)(T_O)T_A)$ $\tau = \rho_a C_d(u) . u^2$ Q_1 = latent heat flux $-\rho_a.L.C_e(u).(q_s(T_o)-q_A)$ SST coupling

Forcing for a Med Sea Model

Forcing for a Med Sea Model

The (high-frequency) on-line coupled approach

Bulk formula and Q_{LW} up are inside the atmosphere model. They are computed every time step (30 min) and the fluxes are cumulated over the coupling frequency (1 day)

