

2210-4

MedCLIVAR Workshop on: "Scenarios of Mediterranean Climate Change under Increased Radiative Active Gas Concentration and the Role of Aerosols

23 - 25 September 2010

Impact of large-scale mid-latitude circulation on regional climate model trends in the Mediterranean area

PAXIAN Andreas and Paeth H. Institute of Geography, University of Wuerzburg Am Hubland, D-97074 Wuerzburg GERMANY

KLIWEX-MED

Impact of large-scale mid-latitude circulation on regional climate model trends in the Mediterranean area

Andreas Paxian, Heiko Paeth

Geographical Institute, University of Wuerzburg

5th ESF-MedCLIVAR Workshop, 23 September 2010, Triest

Model and observation data

- Validation of T+P trends (1961-1990)
- Validation of mid-latitude circulation (1961-1990)

- Multiple regression: $T+P \leftarrow \rightarrow$ circulation
- Circulation-related and -unrelated T+P trends
- Results for future time period (1961-2050)

Model and observation data

- Validation of T+P trends (1961-1990)
- Validation of mid-latitude circulation (1961-1990)

- Multiple regression: $T+P \leftarrow \rightarrow$ circulation
- Circulation-related and -unrelated T+P trends
- Results for future time period (1961-2050)

Models and observations

• Model data:

Iulius-Maximilians-

UNIVERSITÄT

- T, P \rightarrow REMO [JACOB et al. 2001]:
 - RCM of MPI Hamburg, 0.5°
 - IMPETUS simulations: 1960-2050, 3 runs, forced by coupled GCM ECHAM5/MPI-OM, A1b, B1, land use scenarios

- GCM of MPI Hamburg, T42 ~ 1.875°
- Observations:
 - T, P \rightarrow E-OBS 2.0 [HAYLOCK et al. 2008]:
 - Gridded daily station data, 0.5°, 1950-2008
 - SLP \rightarrow NCEP/NCAR [KALNAY et al. 1996]:
 - Global monthly reanalysis data, 2.5°, 1948-today

Model and observation data

- Validation of T+P trends (1961-1990)
- Validation of mid-latitude circulation (1961-1990)

- Multiple regression: $T+P \leftarrow \rightarrow$ circulation
- Circulation-related and -unrelated T+P trends
- Results for future time period (1961-2050)

Temperature Trends 1961-1990

Julius-Maximilians-

UNIVERSITÄT

Precipitation Trends 1961-1990

Julius-Maximilians-

UNIVERSITÄT

Model and observation data

- Validation of T+P trends (1961-1990)
- Validation of mid-latitude circulation (1961-1990)

- Multiple regression: $T+P \leftarrow \rightarrow$ circulation
- Circulation-related and -unrelated T+P trends
- Results for future time period (1961-2050)

UNIVERSITÄT WÜRZBURG Circulation of model ensemble members

- Different ECHAM5 ensemble members show different trends of winter NAO 1961-1990
- \rightarrow Circulation strongly depends on initial conditions

Model and observation data

- Validation of T+P trends (1961-1990)
- Validation of mid-latitude circulation (1961-1990)

- Multiple regression: T+P $\leftarrow \rightarrow$ circulation
- Circulation-related and -unrelated T+P trends
- Results for future time period (1961-2050)

UNIVERSITÄT Multiple Regression: T/P \leftarrow \rightarrow Circulation

- Multiple Regression 1961-1990:
 - E-OBS T+P $\leftarrow \rightarrow$ NCEP circulation modes
 - REMO T+P $\leftarrow \rightarrow$ ECHAM5 circulation modes
 - Cross validation (6 bootstrap years, 1,000 iterations)
 → selection of predictors with robustness > 50%

Multiple Regression for Winter

Julius-Maximilians-

UNIVERSITÄT

Model and observation data

- Validation of T+P trends (1961-1990)
- Validation of mid-latitude circulation (1961-1990)

- Multiple regression: $T+P \leftarrow \rightarrow$ circulation
- Circulation-related and -unrelated T+P trends
- Results for future time period (1961-2050)

Winter Temperature Trends 1961-90

Julius-Maximilians-

UNIVERSITÄT

Winter Precipitation Trends 1961-90

Julius-Maximilians-

UNIVERSITÄT

UNI VERSITÄT Summer Temperature Trends 1961-90

Model and observation data

- Validation of T+P trends (1961-1990)
- Validation of mid-latitude circulation (1961-1990)

- Multiple regression: $T+P \leftarrow \rightarrow$ circulation
- Circulation-related and -unrelated T+P trends
- Results for future time period (1961-2050)

 \rightarrow Future impact of circulation mostly decreases, esp. on winter T

UNIVERSITÄT WÜRZBURG Winter+Summer T+P Trends 1961-2050

Linear Regression (α = 5%):

 \rightarrow More strong, significant circulation-unrelated trends than in 1961-90

 \rightarrow Circulation amplifies circulation-unrelated trends, except for winter P

Summary and Conclusions

- Validation + Multiple Regression 1961-1990:
 - Weak circulation-unrelated trends, except for summer T
 - Circulation explains up to 80% of T+P variance in winter
 - Differences in T+P trends can be explained by differences in circulation (Win: NAO+EA, Sum: Block+SCA)
 → Physics of model circulation correct, but not in phase
 - Model circulation strongly depends on initial conditions
 - → strong impact of initial conditions and interdecadal model variability (circulation) on present-day RCM trends
- Multiple Regression 1961-2050:
 - Strong circulation-unrelated trends of warming and drying
 - Impact of circulation mostly decreases, esp. for winter T
 - \rightarrow GHG signal seems to emerge from interdecadal variability

Attachment

Thank you very much for your attention !!!