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For example in the case of φ3 theory we would choose to subtract p2 C
ε . In fact usually

when people say they are working in the MS they are referring to this exactly. Although

there is nothing wrong with using the MS for the mass and the “on-shell” scheme for the

wave function renormaliztion. But we digress. Suppose we work in the MS scheme and

choose O = φR, what is Ẑ? Then

√

Ẑ = Ẑ−1/2 lim
p2→m2

(p2 − m2)

i

∫

d4xe−ip·x〈0 | φ(0)φ(x) | 0〉 (127)

So that

Ẑ = r (128)

where r is the residue of the pole of the propagator in the MS scheme. Now when we use

the LSZ formula the truncation of the external lines leaves over a finite residue which wasn’t

there in the on-shell scheme so the final result will have an overall factor of Ẑn/2 which will

compensate for the fact that we didn’t normalize the states properly. So if we define the

Z factor in the MS (on shell) scheme as ZMS (Zos) then the final result for the S matrix

element is given by

〈k1...kn | S − 1 | l1...lm〉 =

(

Zos

ZMS

)(n+m)/2

G
∗
(k1, .....kn; l1......ln) (129)

where the ∗ denotes amputated, and I have used the fact that in the MS scheme the residue

of the pole is given by Zos

ZMS
.

HW 3.4 Calculate, at lowest order in λ, the amplitude for two to two scattering in φ3

theory in two ways. First in the usual way using φ as the interpolating field, then using φ2

as the interpolating field and show that you get the same answer.

Finally, we can imagine the case where we use some other field to interpolate for the

states and remained in the MS scheme for the fields in the action. Then there would be an

overall factor of

Ẑ−(n+m)/2

(

Zos

ZMS

)(n+m)

. (130)

V. THE EQUIVALENCE THEOREM

We have gone a long way of getting rid of this notion of field particle duality. So far

we have shown that we can use any field to interpolate for the external states, but we can

go a step further in showing that the choice of fields in the action is also just a matter of
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convenience. Much as the choice of coordinate system is based upon convenience. We will

now prove that there exist equivalence classes of actions, where each action within a given

class yield the same S matrix10. Given an action in terms of a field φ we will show that all

actions obtainable from φ via a transformation of the form

φ = ψ + f(ψ) (131)

will yield the same action. We restrict ourselves to this form of transformation so that we

can make sense out of the action of the new theory. That is, we could imagine choosing a

transformation where the right hand side does not start off with a monomial, but then the

action for the new field would not have a familiar form. In this sense the transformations we

are considering are like canonical transformations in classical mechanics, which are defined

as those transformations which leave the phase space measure unchanged.

Now to the proof. We can write the generating functional of renormalized Greens func-

tions as

Z[J ] =

∫

dπdφexp

(

i

∫

d4x(πφ̇ − H(π, φ) + φJ

)

(132)

We will see in a moment why I chose to write Z in this form 11.

Now consider the theory which arises from making the change of variables

φ = ψ + f(ψ) (133)

in the Hamiltonian. The generating functional for this theory is given by

Z1[J ] =

∫

dπψdψexp

(

i

∫

d4x(πψψ̇ − H1(πψ, ψ) + ψJ

)

(134)

We would like to show that the S matrix elements of this theory are the same as those of

the theory for ψ. To compare the two we use the fact that

Z[J ] =

∫

dπψdψexp

(

i

∫

d4x(πψψ̇ − H1(π, φ) + (ψ + F (ψ))J

)

(135)

where I used the fact that the phase space measure is invariant as well as

πφ̇ = πψψ̇. (136)

10 In general they will not yield the same greens functions.
11 Recall from QMIV that when we derive the path integral we always end up in this phase space form. The

usual form in terms of just an integral over φ results from integrating over π.
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Let’s prove that the Jacobian is one.

∂φ

∂ψ
= 1 + f ′(ψ),

∂πφ

∂ψ
=

−πψ

(1 + f ′(ψ))2
f ′′(ψ)

∂φ

∂πψ
= 0

∂πφ

∂πψ
=

1

(1 + f ′(ψ))
. (137)

where I used

πψ =
∂L

∂ψ̇
=

∂L

∂φ̇

∂φ̇

∂ψ̇
= πφ(1 + f ′(ψ)). (138)

Thus the Jacobian is one, and the transformation is indeed canonical since the Poisson

bracket

{πψ, ψ} = 1 (139)

is preserved. What we’ve actually shown here is that {ψ, πψ} = 1, but you can show that

the jacobians are just inverses of each other. Suppose we had a transformation which was

not just a polynomial in the field? Then there would be a jacobian (perhaps) and you could

get ghosts (see artzs paper on arXive).

We can see that the Greens functions of the two theories will differ due to the factor of

F (ψ). We will now show that while this last statement is true, F will have no effects on the

S matrix elements. First I will show that the two theories have the same pole structures in

their two point functions and therefore the same masses. Consider

〈0 | T (φ(x)φ(y)) | 0〉 = 〈0 | T (ψ(x)ψ(y)) | 0〉 + 〈0 | T (F (ψ(x))ψ(y)) | 0〉

+ 〈0 | T (ψ(x)F (ψ(y))) | 0〉 + 〈0 | T (F (ψ(x))F (ψ(y))) | 0〉. (140)

We can see that single poles are at p2 = m2 (assume we’re working in the on-shell pre-

scription) just as in the theory H1. However, now the residue of the poles will be related

by a factor of (1 + Γ)2, where Γ is the value of the blob at p2 = m2. In this sense the

proof is almost trivial. The only non-trivial piece of information one needs is that Γ has no

poles. We will prove in perturbation theory that Γ will only have cuts when we discuss the

analytic structure of Feynman diagrams. In this sense the prove of the equivalence theorem

presented here relies on perturbation theory. I have a non-perturbative proof but it wont fit

in the margins.
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FIG. 2: The two point function as calculated with the original Z[J ]. The propagators are the exact

two point function, while the dark circle is the exact vertex function.

On might guess that for an n point function we would expect

G(n)
φ = (1 + Γ)nG(n)

ψ (141)

and indeed this is the case as can be seen from studying figure (V). The point is that to have

the proper singularity structure, the Γ vertex must connect to the rest of the diagram through

a single on-shell line. This forces Γ to be a constant which just shifts the normalization of

the Greens function.

VI. THE ALGEBRA OF OBSERVABLES

We have seen that there is a lot of freedom in describing any given theory. We may choose

to interpolate with any field which has non-zero overlap with the one particle state. So there

really is no particle/field duality. We are even free to make canonical transformations leading

to equivalence classes of actions. We would like to capture the structure of a given theory in

as general a way as possible, clearly this would not correspond to choosing some fields and

writing down an action.
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