

2327-2

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data

23 - 27 January 2012

Recent Progress and Integrated Modelling

Kaoru OHYA Instit. of Tech.& Science, The University of Tokushima, 2-1 Minamijyosanjima-cho, 770-8506 Tokushimna JAPAN

Strada Costiera 11, 34151 Trieste, Italy - Tel.+39 040 2240 111; Fax +39 040 224 163 - sci_info@ictp.it

Modelling Erosion and Redeposition on Plasma Facing Walls: Basics and Recent Progress

(I) Modelling basics of erosion and redeposition

Kaoru Ohya

Institute of Technology and Science, The University of Tokushima, Japan

Outline of lecture

(A) INTRODUCTION

A-1) Related issues to plasma wall interaction in fusion devicesA-2) Erosion and redeposition on plasma facing walls

(B) BASIC PROCESSES

- B-1) Projectile reflection and physical sputtering
- B-2) Chemical sputtering and hydrocarbon emission
- B-3) Impurity deposition and material mixing
- B-4) Thermal diffusion of impurities in materials
- B-5) Transport and redeposition of eroded impurities

A-1) Related issues to plasma wall interaction in fusion devices

(1) Erosion of wall elements

Reduced life time of wall elements

(2) Eroded impurities can penetrate into the plasma

Dilution and radiation cooling of core plasma

(3) Redeposition of eroded particles

Tritium retention in redeposited layers

Erosion, transport and redeposition of impurities is a crucial issue in fusion devices !

A-1) Related issues to plasma wall interaction in fusion devices

Global and Local PWIs related to Tritium Retention

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling Using Atomic and Molecular Data, Trieste, Italy, 23-27 January 2012

A-2) Erosion and redeposition on plasma facing walls

Carbon based materials for PFW

Key issues: Chemical sputtering & Tritium incorporation

Codeposition

Impurity transport codes require to treat self-consistently:

I) Physical and chemical erosion of surface

II) Transport of released impurities *above* surface
III) Redeposition of returning impurities and re-erosion of redeposited impurities *on* surface
IV) Resultant material mixing *below* surface

A-2) Erosion and redeposition on plasma facing walls

B-1) Projectile reflection and physical sputtering

Binary Collision Approximation (BCA)

J.Biersack, H.G.Haggmark, Nucl.Instr.Methods 174(1980)257.

B-2) Chemical sputtering and hydrocarbon emission

Hydrogen ion penetrates into carbon and forms hydrocarbon after thermalization, which diffuses to surface and desorbs.

Formalization by J.Roth [JNM266-269(1999)51] :

$$Y_{chem}(E,T, \) = \frac{Y_{low}(E,T)}{1 + \left(\frac{\phi}{6 \times 10^{21}}\right)^{0.54}}$$
$$Y_{low} = Y_{therm}(1 + DY_{dam}) + Y_{surf}$$

Y_{therm}: chemical erosion by thermalized ions
Y_{dam}: enhancement of thermal erosion by radiation damage
Y_{surf}: ion induced desorption of hydrocarbon radicals

Sputtering yield strongly depends on surface temperature (T) and energy (E) and ion flux (ϕ) of bombarding $_8$ ions

B-3) Impurity deposition and material mixing

Differential Fluence: $\Delta \Phi = \Phi / N_H$ (: Total fluence, N_H : Number of pseudo ions) **Surface Thickness:** $d = \sum_{i=1}^{N} \Delta x_i N$: Number of layers, x_i : *i*-th Layer thickness)

Collision process of a pseudo Ion :

Reflection, Implantation, Physical Sputtering

After simulation of collision process :

Areal density of *j*-th atom in i-th layer : $A_{ij} = q_j n_i \Delta x_i + \Delta N_{ij} \Delta \Phi$ (ΔN_{ij} : Change in number of *j*-th atom in *i*-th layer) *i*-th layer thickness : $\Delta x_i = \sum_{j=1}^{N_c} A_{ij} n_{0,j}^{-1}$ ($n_{0,j}$: j-th atom density) *j*-th atom constituent in *i*-th layer : $q_{ij} = A_{ij} / \sum_{k=1}^{N_c} A_{ik}$ Maximum areal density of 1th atom in *i*-th layer : $A_{i1}^{max} = [q_1^{max} / (1 - q_1^{max})] \sum_{j=2}^{N_c} A_{ij}$ Reemission $\Delta A_{i1}^{reem} = A_{i1}^{max} - A_{i1}^{max}$ Saturation $A_{i1} = A_{i1}^{max}$ B-3) Impurity deposition and material mixing

Plasma electron temperature (eV)

J.Nucl.Mater. 329-333 (2004) 732.

B-4) Thermal diffusion of impurities in materials

W.Eckstein et al.; Nucl.Instr.Meth.B 153(1999)415. Impurity Deposition and Collisional Mixing

Thermal Diffusion of Deposited Impurities Diffusion $D = D_0 \exp(-Q_D / kT)$ D_0 : Material Constant (cm²s⁻¹) Q_D : Activation Energy (eV) T: Material Temperature (K)

 Γ : Incident Ion Flux (cm⁻²s⁻¹)

 ϕ : Total Ion Fluence (cm⁻²)

 $t: (= \phi / \Gamma)$ Irradiation Time (s)

- N : Number of Pseudo lons
- $\Delta \phi$: (= ϕ / N) Differential Ion Flux (cm⁻²)
- Δt : (= t / N) Differential Irradiation time (s)

B-4) Thermal diffusion of impurities in materials

Monte Carlo Modeling of Impurity Transport

Plasma

Carbon tile

The released C_xH_y molecule successively collides with plasma electrons and ions.

More than 700 reactions are included.

(R.K.Janev, D.Reiter, Rep.FZ-Juelich, Jul-3966(2002); Jul-4005 (2003))

The elastic collisions with the residual neutral hydrogen atoms

The model includes

- Lorenz force $F_z = q(v \times B)$
- friction force and

temperature gradient thermal force

$$F_{z} = m_{z} \frac{(v_{i} - v_{z})}{\tau_{s}} + \alpha_{e} \frac{d(kT_{e})}{ds} + \beta_{i} \frac{d(kT_{i})}{ds}$$

: P.C.Stangeby, *The Plasma Boundary of Magnetic Fusion Devices* (IOP, Bristol, 2000) p.296.

• Debye sheath and magnetic pre-sheath potential

$$\phi(z) = \phi_1 \exp\left(-\frac{z}{2\lambda_{Debye}}\right) + (\phi_0 - \phi_1) \exp\left(-\frac{z}{R_{gyro}}\right)$$
$$f_D = 1 - \phi(6\lambda_{Debye}) / \phi_0 \approx 0.25$$

- ϕ_0 : sheath potential
- : J.N.Brooks, Phys. Fluids B2(1990)1858.

• Cross-field diffusion

 $(\Delta x, \Delta y) = \sqrt{2D_{\perp}\Delta t} \bullet (r_{Gx}, r_{Gy}) \qquad D_{\perp} = 1 \ [m^2 / s]$

: K. Shimizu, T. Takizuka purakakugakkaishi 71 (1995) 1135.

Hydrocarbon Redeposition on PFW Surfaces

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling Using Atomic and Molecular Data, Trieste, Italy, 23-27 January 2012

B-5) Transport and redeposition of eroded impurities

and (T+D)/C = (T+D)/Be = 1 for remote deposits.

Temperature distribution on target calculated,

Summaries of lecture

- (I) "Erosion/deposition" on plasma facing walls in fusion devices is a critical issue related to
 - (a) transport of impurities in plasma boundary,
 - (b) lifetime of plasma-facing components and
 - (c) tritium retention in plasma-facing components.
- (II) Modelling codes of "erosion/deposition" require to treat selfconsistently:
 - (a) Physical and chemical erosion of surface,
 - (b) Transport of released impurities *above* surface,
 - (c) Redeposition of returning impurities and re-erosion of redeposited impurities *on* surface, and
 - (d) Resultant material mixing *below* surface
- (III) Models and assumptions in the codes have to be evaluated in cross-code and code-experiment benchmarking, whereas reliable database of physical parameters used in codes have to be prepared.

Summaries of Lecture

(continued)

(VI) Integration of "erosion/deposition" codes with plasma and material codes is an urgent issue for understanding of plasma wall interactions in fusion devices in more realistic in-vessel geometry. Joint ICTP-IAEA Workshop on Fusion Plasma Modelling Using Atomic and Molecular Data, Trieste, Italy, 23-27 January 2012

Integrated simulation for in-vessel retention of tritium

