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Outline of Lecture 

A-1) Local deposition of impurities on plasma facing materials
(A) INTEGRATED MODELLING OF EROSION/DEPOSITION

(B) MODELLING  USING PLASMA AND MATERIAL CODES

A 1) Local deposition of impurities on plasma facing materials

B-1) Particle-in-Cell simulation of plasma sheath
B-1-1) Carbon deposition in the gaps of castellated tiles 

B-2) Molecular dynamics simulation of plasma wall interaction

B 2 2) Re erosion of deposited impurities on plasma facing walls
B-2-1) Reflection/sticking coefficient of deposited materials

(C) TRITIUM RETENTION IN ITER WALL MATERIALS

B-2-2) Re-erosion of deposited impurities on plasma facing walls 

C-1) Long-distance transport of carbon and beryllium in plasmas 

(C) TRITIUM RETENTION IN ITER WALL MATERIALS 

C 2) L l t iti t ti i t t di t t tC-2) Local tritium retention in tungsten divertor targets
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Dynamic plasma wall interaction code, EDDY
Plasma ion bombardment of Material Surfaces

(1) Simultaneous bombardment with hydrogen and impurity ions ; H++Cq++Beq++Wq+

(2) Maxwellian velocity distribution and sheath acceleration 
(PIC simulation of plasma density and potential)

Dynamic Erosion and Deposition Processes 
(3) Physical sputter erosion and plasma impurities deposition (dynamic BCA)( ) y p p p p ( y )
(4) Chemical sputter erosion due to hydrocarbons formation     (Roth formulae)
(5) Collisional mixing and thermal diffusion           materials mixing

Impurity Transport in Plasma above Surfacesp y p
(6) Multiple ionizations and dissociations of sputtered and reflected impurities,

including CH4 and higher hydrocarbons 
a set of rate coefficients from Janev/Reiter

(7) G ti f th i i d i iti i lt l i i(7) Gyromotion of the ionized impurities, simultaneously receiving 
(a) collisional friction force,       (b) temperature gradient thermal force, 
(c) crossed field diffusion,         (d) sheath and presheath electric field, and 
(e) elastic collision with neutral hydrogen. (Also, PIC simulation)(e) elastic collision with neutral hydrogen.         (Also, PIC simulation)

Local Redeposition of Impurities on Surfaces
(8) Reflection or sticking of carbon and hydrocarbons (MD simulation) 

particle species impact energy and material dependent
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particle species-, impact energy- and material-dependent.
(9) Re-erosion of deposited and mixed materials (MD simulation)
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A-1) Local deposition of impurities on plasma facing materials

13CH4 injection experiments at TEXTOR

Top of the limiter was positioned at LCFS,

A.Kreter et al.; 
J.Nucl.Mater. 363-365(2007)179.

Top of the limiter was positioned at LCFS, 
the radial position of which is r=46 cm.

At LCFS,  Te=54 eV, Ti=1.5Te and    
n =1 9x1012 cm-3ne=1.9x1012 cm 3. 

Radial decay of the plasma parameter:
lTe=lTi=40 mm, and lne=22 mm

13CH4 was injected into the plasma through a 
hole in the limiter surface.

roof-like test limiter exposed to 

12C concentration of the background 
plasma was taken to be 3%. 
(Assumption)p

SOL plasma of TEXTOR
( p )

Most unexpected observation was the very low local 
deposition of 13C on the limiter surface ( 0 2%)
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deposition of 13C on the limiter surface (~0.2%).
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2D patterns of 13C deposition

13 Standard condition: S=0 5 and Y h =3%Kreter et al. (2007)13CH4
Injection hole

Standard condition:   S=0.5 and Ychem=3%

Calculated: ~50% depsoition efficiency, and 
a factor of 100 larger than in experiment

Kreter et al. (2007)

Observed pattern
S=0.5, but enhanced erosion of redeposited 

carbon atoms, Yenh=30%
Calculated: 33% 13C depsoition
Still too large 13C depsoition and 
patterns still too much peaked

Calculated: 33% 13C depsoition
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Deposition efficiency strongly changes with injection time.

Deposition efficiency in steady state is in 
fair agreement with the efficiency 
calculated by ERO-HMM, not only for S=010
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but also for S=0.01-0.5.
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  from ERO-HMM

EDDY
and re-erosion of redeposited carbon
are still unknown parameters, which 
determine erosion and deposition of 

0.01
0 1 2 3 4 5 6

1

13CH
4
 injection time (s)

p
plasma facing materials.

Sticking probability S=0.5 S=0.1 S=0.05 S=0.01 S=0

EDDY 33.0 5.1 2.2 0.5* 0.1*
ERO 32 0 5 0 2 0 0 5 ~0 1

13C deposition efficiency (%)
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ERO 32.0 5.0 2.0 0.5 0.1
*averaged between 5.29 s and 5.88 s

K.Ohya & A.Kirschner; Phys.Scr.T138(2009)014010.
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Sheath
electrostatic 
potential
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Plasmas in the fusion devices are
usually contacting with walls.
Sheath layer is formed in front of wall

ve
rt
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E Sheath layer is formed in front of wall.

Trajectory simulation of plasma ions and 
electrons with numerical solution of the 

SO
L/

 D
iv Magnetic 

Presheath
collisional 
presheath

equation of motion in three dimensions 

Solution of the Poisson’s equation in one 
or two dimensions to obtain the self-

ion

PIC simulation
or two dimensions to obtain the self
consistent electric field, acting plasma 
particles.

y
electron

e-H+e-
wallplasma

Debye Sheath

zx
eHe

PIC code solves the equations of motion and Poisson’s equation self-consistently

Magnetic Presheath
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PIC code solves the equations of motion and Poisson s equation self-consistently.
The plasma particles with Maxwellian velocity distribution are generated at the edge region.
The sheath potential vary with the charging of the wall.
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B-1) Particle-in-Cell simulation of plasma sheath
Joint ICTP-IAEA Workshop on Fusion Plasma Modeling Using Atomic and Molecular Data, Trieste, Italy, 23-27 January 2012


z

x

Ion

wall

0
The magnetic presheath is formed due to the 
polarization between ions and electrons.

Potential Profiles with Oblique Magnetic Field
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surface, the width of MP  increases.
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With an oblique magnetic field, some of SEs are reabsorbed 
at the wall within a gyrocircle, the net SE yield decreases.
Mizoshita et al. (1995), Inai el al. (2009) 
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Potential drop of the sheath is independent of the magnetic 
angle, but SE emission from W causes a decrease 
in the potential drop. 
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B-1) Particle-in-Cell simulation of plasma sheath
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0.04 0.05

Energy and angular distributions of ions incident on walls
K.Ohya; JNM415(2011)S10.
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The impact energy does not depend on angle of magnetic field because potential drop is same.
The energy distribution of heavier hydrogen isotopes is shifted to higher energy.
The most probably angle is smaller than the angle of the magnetic field except for the case    

of the nearly normal magnetic field to the surface.

The energy and angular distributions affect 
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the sputtering and the reflection from the wall
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Plasma distribution around the gaps, in particular, toroidal gap, depends on the magnetic      
field angle. K.Ohya; JNM415(2011)S10.
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K.Ohya; JNM415(2011)S10.
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H ion with gyro radius of 0.1mm cannot penetrate into a narrow gap of 0.2mm. 
When the gap width is 0.5mm, H ion cannot deeply penetrate due to E x B drift.
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Tile side
Bottom

Penetration depth of hydrocarbons in the toroidal gap
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When the gap width is 0.5 mm or more, the redeposition can be found at the bottom 
of the gap.
V (<0 2 ) th d iti i l li d t th d

p ( )
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Very narrow gap (<0.2 mm) causes the redeposition is localized at the gap edge.
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Species dependence Using sticking coefficient calculated by MD, 
low energy hydrocarbons are reflected 
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The neutral species are liberated from a 
magnetic constrain, they are redeposited 
deeply
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deeply.

Since the ionized particles are confined by 
the magnetic field and have high sticking 
coefficient due to sheath acceleration they
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B-2) Molecular Dynamics simulation of plasma wall interaction
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Integrating equation of motions of constituent atoms : Small cell containing 
103 -107 atoms

Verlet algorithm：
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Many-body term：

C-C, C-H : Brenner (1990, 1992), REBO (2002) and AIREBO (2000)
W-W, W-C, W-H : Juslin et al. (2005)

Fusion-related parameter sets for
   

W W, W C, W H : Juslin et al. (2005)
Be-Be, Be-C, Be-H, Be-W : Bjorkas et al. (2009, 2010)



B-2) Molecular Dynamics simulation of plasma wall interaction
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Coupling to an external bath (Langevin equation)

: Excess heat dissipation in collisions with energetic atom.

HJC.Brendsen et al.:
JCP81(1984)3684.







 


 11 0

T
Tt

T
 t：time step, T：time constant

T： temperature of the system, T0：fixed reference temperature

p g

It represents a proportional scaling of the velocities per time step.

Periodic boundary conditiony

Th i l ti ll i li t d th h t th t Simulation

: Topmost atoms are free, but 
bottommost atoms are fixed.

The simulation cell is replicated throughout the space to 
form an infinite lattice.
If an atom leaves the simulation cell, one of its images will 

t th h th it f

Simulation 
cell

enter through the opposite face.

Simulation cell：should 
be large

More realistic, but
time‐consuming.
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B-2) Molecular Dynamics simulation of plasma wall interaction
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incident numberC→W

E=10eV

N=5000N=3000N=1000

incid

E=100eV

dent en E=1keVnergy

E 1keV
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( ) 1 k V( ) 30 V
B-2) Molecular Dynamics Simulation of plasma wall interaction

Joint ICTP-IAEA Workshop on Fusion Plasma Modeling Using Atomic and Molecular Data, Trieste, Italy, 23-27 January 2012
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@ Changes in C and W sputtering yields are in good agreement with those between 

@ For C reflection coefficients, it is different from each other at low energy. 

g p g y g g
MD and dynamic MC code, EDDY.
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B-2-1) Reflection/sticking coefficient of deposited materials
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Preparation of Realistic PFW Surfaces

Bombardment 
W crystal with 100eV-C W-C mixed layer

Bombardment
with 10eV-C

Simultaneous bombardment 
with 0.1-30eV-H and 

with 10eV C

C deposition layer H d t d/

0.025eV-C

C deposition layer
(amorphous carbon)

Hydrogenated/ 
amorphous carbon (H/C: 0 – 0.4)

The W surface is bombarded with C atoms at the temperature of 10eV and 100eV.
At l l t t th W i d b d it d C d t hi h t t

19

At low plasma temperature, the W is covered by deposited C and at higher temperature 
W-C mixed layer is formed.

The a-C:H layer with different H/C is formed when a-C is bombarded with H atom.



B-2-1) Reflection/sticking coefficient of deposited materials
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The W surface increases the reflection coefficients and there reflected much more C atoms.
Increase of hydrogen in amorphous carbon increases the reflection coefficients.
Most of incident methane reflect at thermal energy and break up at higher energy (>10eV).



B-2-1) Reflection/sticking coefficient of deposited materials
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Tritium retention rate in C and Be deposits
Decay length*1 First wall TotalDivertor*2Decay length First wall Total

(cm) Inner target dome Outer target 

(a) Carbon deposition

Divertor

1.26 0.01 2.51 0.12 3.89

(b) Beryllium deposition

1 0 06 0 03 0 0 48 0 58

[mgT/s] [mgT/s] [mgT/s][mgT/s] [mgT/s]

1 0.06 0.03 0 0.48 0.58

3 0.06 0.04 0 0.60 0.70

10 0.03 0.14 0 1.48 1.65

Dominant T retention in C occurs at the inner and outer divertor target, whereas it occurs at the first wall. 
Retention rate in Be is strongly influenced by decay length of plasma parameters from the grid edge to 
the first wall. 

Using a discharge duration of 400 s, the number of discharge after which an in-vessel T safety limit of 
700 g is reached are estimated from the sum of the T retention rate in C and Be deposits, if the retention 
rate in W is negligibly low. 
It is predicted to be 295 – 395 discharges, depending on the decay length. 
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C-2) Local tritium retention in tungsten divertor targets

Local plasma wall interaction related to Tritium Retention 
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C-2) Local tritium retention in tungsten divertor targets
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At the position where the temperature is high, the number of retained D atoms 
increases without any saturation. Most of D atoms are retained as mobile atoms.
At the low temperature position, it tends to saturate where most of trap sites 
near the surface are occupied by implanted D atomsnear the surface are occupied by implanted D atoms. 
After discharge (>400 s), most of D atoms are kept to be retained in the bulk, 
where they can diffuse deeper. 39
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Time evolution of Tritium Retention in Targets
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From the distribution of retained D atoms during and after discharge the T

the T retention is reduced due to surface 
recombination of mobile atoms.

From the distribution of retained D atoms during and after discharge, the T 
retention in the inner and outer targets are estimated by taking the atomic mass 
difference between D and T into account, and assuming toroidal symmetry. 40
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Trap concentration, Ttrap/W
Finally, the number of discharges, after which an in-vessel T safety limit of 700 g is reached, is 
estimated from the sum of T retention of the inner and outer targets; T retention in other walls 

0.0001 0.6 11.1 11.70

is not taken into account.
The number of discharges is of the range between 12000 and 24000, depending on the trap 
concentration from 0.01 to 0.0001. It is increased to the values between 22000 and 60000, if 
the T retention sufficiently after discharge (1000 s) is usedthe T retention sufficiently after discharge (1000 s) is used.
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