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A linear system is defined as one which has a
response proportional to external influence and has a
well-known property, i.e. if influences, F1, F2 …., Fn
are applied simultaneously, the response produced is
the sum of the responses that would be produced if
the influences were applied separately.
A nonlinear system is one in which the response is
not strictly proportional to the influence and the
transfer of energy from one influence to another can
occur.

Linear and Nonlinear Systems



4

If the influences are periodic in time, the response of
a nonlinear system can contain frequencies different
from those present in the influences. However, the
point to emphasize here is that, as well as the
generation of new frequencies, nonlinear optics
provides the ability to control light with light and so to
transfer information directly from one beam to
another without the need to resort to electronics.

Traditionally, nonlinear optics has received a
phenomenological approach in terms of the effect of
an electric field on the polarization within a
material.
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Electromagnetic processes are described by
Maxwell’s equations which constitute a set of linear
equations. In SI units:

t
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t

  
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
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where E and B are the electric and magnetic fields.
The displacement fields D and H arise from the
external charge and conduction current densities 
and J. In most cases of interest in nonlinear optics, 
= 0 and J = 0.

MAXWELL EQUATIONS
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‘Constitutive relations’ connect the charge and
current distributions within the medium and the
displacement fields to the electric and magnetic
fields.

0      D P E E B H

where P is the induced polarization in the medium
resulting from the field E,  is defined as a dielectric
constant and 0 is the permittivity of free space
(8.85 × 10-12 F m-1 in MKS units). Optical materials
are mostly non magnetic  = r 0 = 0.
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LINEAR THEORY

Usually one assumes a linear response of a
dielectric material to an external field

0  P E

Where P is the vector representing the electric dipole
moment per unit volume induced by the external
electric field E, 0 is vacuum permittivity and  is a
quantity characteristics of the considered material
with no dimensions, called electric susceptibility.
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In general  is a tensor

0

  
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  

xx xy xzx x
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P E
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The symmetry properties of the material indicate
which ones of the ij coefficients are zero.
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HOMOGENEOUS MATERIALS
 not depending on space

div div

Brot rot
t t
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WAVE EQUATION
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Experimentally the refractive index is a function of
wavelength (frequency)

r rn( ) ( ) ( ) 1 ( )         

This phenomenon is called DISPERSION.

DISPERSION

Nucleus: ~2000 electron mass, i.e., infinite mass

The polarization in a material medium can be
explained considering the electrons tied to the atoms
as harmonic oscillators.
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DISPERSION
i t

0mx x kx eE e      (one-dimensional model)

From the solution:
i t
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

the induced moment is calculated:
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For N oscillators per volume unit, the polarization is:

 
tieE

im
eNpNP 

 022
0

2


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
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where  is the electric susceptibility.
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If the second term is lower than 1 (as it happens in
gases):

2

2 2
0 0

Nen 1
2 m( i )

 
    

In the expression n comes out to be a complex
number.

2
2

2 2
0 0

Nen 1
m( i )

 
    
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ABSORPTION
The term i is responsible for absorption. The
complex index can be written as

   
2 2 2 2

0
2 22 2 2 2 2 2 2 2

0 0 0 0

Ne ( ) Nen n ik 1 i
2 m 2 m


    

            

   

         

If we consider a plane wave 

 E Aexp i( t kz) where
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The last exponential represents a term of attenuation.
The attenuation coefficient may be defined from:

2 z
(0)

1 dI I(z) E I e
I dz

    

By comparison with the previous equation
4 k 


2 n 2 kE Aexp i t z exp z
             

 
 

2 n 2 kE Aexp i t z exp z
             

 
 

we see that, substituting the complex refractive
index, one has 2k (n ik)  



which gives
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It can be noticed that a small value of leads to an
elevated attenuation.

10.0001 and 0.5 gives 25 cm .     k m

k
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Substance 
 

n (for yellow light) 
 

r   

(static value) 

Air (1 atm) 1.0002926 1.0002925 

CO (1 atm) 1.00045 1.0005 

Polistyren 1.59 1.6 

Glass 1.5    1.7 2    3 

Fused quartz 1.46 1.94 

Water 1.33 9 

Ethanol 1.36 5 

 

Table I

Values of n and r
for some materials

n as a function of  for
some materials
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At resonance ( = 0)

the slope of is negative anomalous dispersionn

 

 
Absolute refraction index at 20°C for the line D of Sodium (=5890 Å) 

 

Solids 
 

n  
 


Liquids 


n

 
Gas n 

Canadian 
balsam 1.528 Acetone 1.359 Carbon dioxide 1.000448 

Calcite 1.658 Water 1.333 Air  1.000292 

Dispersive 
Crown  1.520 Ethanol 1.361 Nitrogen 1.000296 

Heavy Flint  1.650 Benzene 1.502 Helium 1.000036 

Amorphous 
quartz 1.458 Etere etilico 2.352 Hydrogen 1.000132 

Heavy glass 1.970 Solfuro di 
Carbonio 1.627 Oxygen 1.000271 

 

normal dispersion1n for 0 
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METALS
In a metal the electrons are free and they do not
oscillate around the atoms. Therefore k = 0 and
0 = 0.
In the equation for n2 it is sufficient to put 0 = 0.

2
2

2
0

Nen 1 N density of electrons
m( i )

  
  

If  << 

2
p2
2n 1


 



2
2

p
0

Ne
m

 


Frequency of plasma

For Al, Cu, Au, Ag    N ~ 1023 cm-3 and P~ 2.1016 s-1.
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For n is real and the waves propagate freely.

For n is pure imaginary and the field is
exponentially attenuated with the distance from the
surface. Therefore the radiation is reflected from the
surface.

Therefore, for visible radiation and infrared  < P
and n is imaginary. In general, n is complex because
there is :



 
 
     

   

2 2 2
2

2 2 2 2
0 0 0

2 2 2 2

1

p p

iNe Ne Nen i
m i i m m

i

 
     

            

  


     

P> 

P
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NONLINEAR SUSCEPTIBILITY

Dipole moment per unit volume or polarization in 
the linear case

The general form of polarization in a nonlinear
medium is
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NONLINEAR SUSCEPTIBILITY

In some cases also the magnetic field is important 
and quadrupole terms

In these cases the general form of polarization in a
nonlinear medium is

+ χijk
(2) Ej Bk + χijkl

(2)(·E)E + ..
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JUSTIFICATION OF THE PRESENCE OF A 
NONLINEAR RESPONSE

If the force exercised by the electric field
of the wave becomes comparable with
the Coulomb’s force between the electron
and the nucleus, the oscillator is
perturbed (anharmonic oscillator) and,
at the lower level of the perturbation, we
can write:

2 2
0x(t) x(t) x(t) Dx (t) (e / m)E(t) (4)      

x
E
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The solution of eq.(4) can express as the sum of two
terms (1) (2)x(t) x (t) x (t) (5) 

in which x(1)(t) is obtained solving eq.(4) without the
anharmonic term, whereas x(2)(t) is considered a
small correction of the solution at the first order x(1)(t)
and is obtained utilizing x(1)(t) in the anharmonic term

2(2) (2) 2 (2) (1)
0

eE(t)x (t) x (t) x (t) D x (t) . (6)
m

         

In this way, considering the case in which the forcing
electric field is formed by the sum of two fields at
different frequencies

1 2j t j t
1 1 2 2 1 2

1E(t) E cos t E cos t E e E e c.c. (7)
2

           
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We have the solution at the first order
1 2j t j t(1) (1) (1)

1 2
1x (t) x ( )e x ( )e c.c. (8)
2

         

and subsequently the solution at the second order,
solving eq.(6) with the use of (8) is

       

   

1 2 1 2

1 2

j t j t(2) (2) (2)
1 2 1 2

j2 t j2 t(2) (2)
1 2

1x (t) [x e x e
2
x 2 e x 2 e c.c] (9)

     

   

       

    

in which

         

   

2
(2) 1 2

1 2 2 2 2 2 22
0 1 1 0 2 2 0 1 2 1 2

2 2
(2) k

k 22 2 2 2
0 k k 0 k k

1 D(e / m) E Ex
2 j j j

1 D(e / m) Ex (2 ) ; k 1,2. (10)
2 j 4 j

    
                 


   

        
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Therefore the solution of the second order brings to
the generation of oscillations at a frequency
different from the ones of the forcing field. In
particular, it is possible to have frequencies equal to
the sum or to the difference of the field frequencies
or to the double (second harmonic). Moreover, we
emphasize that the previous formulas remain valid
also if just a single forcing field  is present. In this
case x(2)(t) will be the sum of a second harmonic
term (2) with a null pulsation term (term of optical
rectification).
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Now, remembering the expression for the
polarization of the medium, we can write

(1) (2)P(t) Ne x (t) x (t) (11)    
where N is the number of dipoles for volume unit; that
is

L NLP(t) P (t) P (t) (12) 

Which, compared with (10)

(1)
L 0

(2)
NL

P E

P E E. (13)

  

  

         

   

2
(2) 1 2

1 2 2 2 2 2 22
0 1 1 0 2 2 0 1 2 1 2

2 2
(2) k

k 22 2 2 2
0 k k 0 k k

1 D(e / m) E Ex
2 j j j

1 D(e / m) Ex (2 ) ; k 1,2. (10)
2 j 4 j

    
                 


   

        

permits to write
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SECOND HARMONIC PRODUCTION
The nonlinear properties in the optical region have
been demonstrated for the first time in 1961 by
Franken et al. during an experiment of second
harmonic generation. Sending red light of a ruby
laser ( = 6.943 Å) onto a crystal of quartz, they
observed ultraviolet light.
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To describe the phenomenon, it is necessary to
observe that in many crystal materials the nonlinear
polarization depends on the direction of
propagation, on the polarization of the electric field
and on the orientation of the optical axis of the
crystal. Since in such materials the vectors P and E
are not necessarily parallel, the coefficient  is a
tensor. The second order polarization can be written
as

(2)
ijk j ki

j,k
P d E E (14)

where i, j, k represent the coordinates x, y, z. The
main part of the coefficients dijk, however, are usually
zero and so only a few of them must be considered.
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Only the non-centrosymmetric crystals can have a
non null tensor dijk. In facts, let us consider an
isotropic crystal. In this case dijk is independent from
the direction and therefore it is constant. If now we
invert the direction of the electric field, also the
polarization must change sign, that is

(2) (2)
ijk j k ijk j ki iP d ( E )( E ) d E E P .       

It is clear that, not being able to be , dijk
must be null.

Moreover, in materials for which d ≠ 0, since no
physical meaning can be assigned to an exchange of
Ej with Ek, it must be dijk = dikj.

(2) (2)
i iP P  
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Now if we consider the Maxwell equations writing

0D E P (15)  
we have

0
D E Prot B j j
t t t

Brot E . (16)
t

  
      

  


 


The polarization can be written as the sum of a linear
term plus a nonlinear one

0 L NLP E P (17)   

where, in case of materials with second order
nonlinearity is, f.e.

 NL ijk j kiP d E E . (18)
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So eq.(16) can be written, assuming j = 0

NLPErot B (19)
t t


  

 

from which
22

2 NL
2 2

PEE . (20)
t t


   

 

If we consider the unidimensional case of propagation
along a direction z, we have

22 2
NL ii i

2 2 2
(P )E E . (21)

z t t
 

  
  



34

Let us consider now three monochromatic fields with
frequencies 1, 2, 3 using the complex notation

 

 

 

1 1z1

2 2 z2

3 3z3

j t k( )
1ii

j t k( )
2kk

j t k( )
3 jj

1E (z, t) E (z)e c.c.
2
1E (z, t) E (z)e c.c.
2
1E (z, t) E (z)e c.c. (22)
2

 

 

 

   

   

   
where the indices i, j, k represent the components x
or y.

The polarization at frequency 1 = 3 - 2, for
example, from (18) and from (22) results

    3 2 3 21 j t k k z( )
ijk 3 j 2ki

j,k

1P d E (z)E (z)e c.c. (23)
2

     

 NL ijk j kiP d E E . (18)
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Substituting eqs.(22) into (21) for the component E1i,
it is necessary to calculate

  
1( )2 2

1i 1 12 2
E 1 E (z)e t k z c.c. . (24)

2z z

 
   

 

If we assume
2

1i 1i
1 2

dE d Ek (25)
dz dz



we have
 1

1 1

( )2
j t k z2 1ii

1 1i 12
E 1 dE (z)k E (z) 2 jk e c.c. (26)

2 dzz


         

with similar expressions for
2 3

( )2 ( )2
j k
2 2

E Eand .
z z

  
 
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Finally, substituting (26) and (23) into (21) we have

 3 2 1j k k k z01i 1
ijk 3 j 2k

1

dE (z) j d E E e c.c. (27)
dz 2

  
  

 

and in analogous way

 

 

1 3 2

1 2 3

j k k k z02k 2
ijk 1i 3 j

2

3j j k k k z3 0
ijk 1i 2k

3

dE j d E E e c.c.
dz 2

dE
j d E E e c.c.. (28)

dz 2


  

  

 


 
  







The second harmonic generation is obtained
immediately from (27) and (28) for the case of 1 = 2
and 3 = 21. Therefore it is enough to consider only,
f.e., (27) and the last one of (28).
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To further simplify the analysis we can assume that
the power lost by the frequency 1 (fundamental) is
negligible, and therefore

1idE 0. (29)
dz



So it is sufficient to consider just the last one of (28)

3j j k z0
jik 1i 1k

dE
j d E E e (30)

dz
 

  
 

where 3
1 2


  

and ( j) (i) (k)
3 1 1k k k k . (31)   

 

 

1 3 2

1 2 3

j k k k z02k 2
ijk 1i 3 j

2

3j j k k k z3 0
ijk 1i 2k

3

dE j d E E e c.c.
dz 2

dE
j d E E e c.c.. (28)

dz 2


  

  


 



 
  






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In eq.(31) is the constant of propagation of the
beam at 1 polarized in the direction i. The solution of
(30) for E3j(0) = 0 for a crystal of length L is

(i)
1k

j k L
0

3 j jik 1i 1k
e 1E (L) j d E E

j k

    
 

or
 

 

22 22 20
3 j jik 1i 1k 2

sen k L / 2
I(L) E (L) d E E L . (32)

k L / 2
 

  
  


According to (32) a requirement for an efficient
second harmonic generation is that k = 0, that is
from (31) with 3 = 2, 1 = 2 = 

 2 ( )k 2k . (33) 

( j) (i) (k)
3 1 1k k k k . (31)   
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If k ≠ 0, the second harmonic wave generated at a
generic plane z1 which propagates until another
plane z2 is not in phase with that generated in z2. This
produces an interference described by the factor

 
 

2

2
sen k L / 2

k L / 2
 

 

in (32).

The condition (33) is never practically satisfied
because, due to dispersion, the refractive index
depends on .

 
 

22 22 20
3j jik 1i 1k 2

sen k L / 2
I(L) E (L) d E E L . (32)

k L / 2
 

  
  



 2 ( )k 2k . (33) 
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Therefore, we have

 (2 ) ( ) (2 ) ( )2k k 2k n n (34)
c

   
    

being
( )

( ) nk (35)
c


 


and therefore
k 0. 
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Phase Matching 


)2(

2
•Since the optical (NLO) media are dispersive,
The fundamental and the harmonic signals have
different propagation speeds inside the media. 

•The harmonic signals generated at different points 
interfere destructively with each other. 

•Since the optical (NLO) media are dispersive,
The fundamental and the harmonic signals have
different propagation speeds inside the media. 

•The harmonic signals generated at different points 
interfere destructively with each other. 
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Coherence length
We have no more second harmonic production when

Sin(∆kL/2)/∆kL/2 = 0

This is achieved when ∆kL/2 =π

Which means L = 2π/∆k

that is named coherence length
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However, it is possible to make k = 0 (phase-
matching condition) using various skills; the most
used of which takes advantage from the natural
birefringence of the anisotropic crystals. From (34) we
can see that k = 0 implies

(2 ) ( )n n (36) 

so that the refractive indices of second harmonic and
of fundamental frequency have to be equal.

In the materials with normal dispersion, the index of
the ordinary and extraordinary wave along a direction
increase with , as it is shown in the table.

 (2 ) ( ) (2 ) ( )2k k 2k n n (34)
c

   
    
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, m                                              Index
no (ordinary beam) ns (extraordinary beam)

0,2000 1,622630 1,563913

0,3000 1,545570 1,498153

0,4000 1,524481 1,480244

0,5000 1,5144928 1,472486

0,6000 1,509274 1,468267

0,7000 1,505235 1,465601

0,8000 1,501924 1,463708

0,9000 1,498930 1,462234

1,0000 1,496044 1,460993

1,1000 1,493147 1,459884

1,2000 1,490169 1,458845

1,3000 1,487064 1,457838

1,4000 1,483803 1,456838

1,5000 1,480363 1,455829

1,6000 1,476729 1,454797

1,7000 1,472890 1,453735

1,8000 1,468834 1,452636

1,9000 1,464555 1,451495

2,0000 1,460044 1,450308
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This makes it possible to satisfy eq.(36) when both
the beams are of the same kind (that is both
extraordinary or ordinary). Or (36) can be satisfied, in
some cases, using an ordinary and an extraordinary
wave.

In order to illustrate this point we can consider the
dependence of the refractive index of the
extraordinary wave in a uniaxial crystal, from the
angle  between the direction of propagation and the
optical axis (z) of the crystal.

2 2

2 2 2
s 0 s

1 cos sen . (37)
n ( ) n n

 
 



(2 ) ( )n n (36) 
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If an angle n exists for which
In this case if the fundamental beam (frequency ) is
propagated along n as a ordinary beam, the second
harmonic beam will be generated along the same
direction as an extraordinary beam. This situation is
shown in the figure.

(2 ) ( )
s 0n n  (2 ) ( )

s n 0n ( ) n .  
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The angle n is determined by the intersection
between the sphere (shown as a circle in the figure)
which corresponds to the index surface of the
ordinary beam to  with the index ellipsoid of the
extraordinary beam. The angle n, for negative
uniaxial crystals (that is for crystals for which
is given by

(2 ) ( )
s 0n n 

2 2
n n
2 2 2(2 ) (2 ) ( )

0 s 0

cos sen 1 (38)
n n n  

 
 

          
that is

2 2( ) (2 )
0 02

2 2(2 ) (2 )
s 0

n n
sen . (39)

n n

  

  

       
      
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According to (32), if we deviate from the matching
condition, for a fixed length L of the nonlinear crystal,
we have a reduction of the second harmonic power
generated by the factor

 
 

2(2 )

(2 ) 2
max

sen k L / 2P . (40)
P k L / 2




 


 

 
 

22 22 20
3 j jik 1i 1k 2

sen k L / 2
I(L) E (L) d E E L . (32)

k L / 2
 

  
  


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This relation can be easily verified varying the angle
 =  - n between the direction of index matching
and the propagation direction.

A diagram of the second harmonic power according to
 is shown in the figure (where the theoretical curve
(sen x/x)2 is also shown).
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In the case of nanostructures, phase
matching is not so important because
in any case the radiation propagates
over lengths which are comparable
with the wavelength and so
decoherence is negligible
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Optical conservation laws
Conservation of momentum

k(2ω) = 2k(ω)

Conservation of energy    

2ω = ω + ω

2ħω = ħω +ħω
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Nonlinear Optical Interactions

• The E-field of a laser beam

• 2nd order nonlinear polarization 

C.C.)(~
  tiEetE 

)C.C.(2)(~ 22)2(*)2()2(   tieEEEtP 




2
)2(
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2nd Order Nonlinearities 

• The incident optical field

• Nonlinear polarization contains the following terms

..)(~
21

21 CCeEeEtE titi   

(2) 2
1 1

(2) 2
2 2

(2)
1 2 1 2

(2) *
1 2 1 2

(2 )                    (SHG)

(2 )                    (SHG)

( ) 2         (SFG) summ frequency generation

( ) 2         (DFG) difference frequency generation

(0)

P E

P E

P E E

P E E

P

 

 

  

  





 

 

 (2) * *
1 1 2 22 ( )   (OR)E E E E 
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1

2
)2(

1

2
213  

Sum Frequency Generation

1
3

2Application:
Tunable radiation in the 
UV Spectral region.

Application:
Tunable radiation in the 
UV Spectral region.
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1

2
)2(

2

1
213  

Difference Frequency Generation

1
3

2
Application:
The low frequency 
photon,      amplifies in 
the presence of high 
frequency beam      . This 
is known as parametric 
amplification.

Application:
The low frequency 
photon,      amplifies in 
the presence of high 
frequency beam      . This 
is known as parametric 
amplification.

2

1
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Third Order Nonlinearities

When the general form of the incident electric field is in the
following form,

The third order polarization will have 22 components

tititi eEeEeEtE 321
321)(~   

3,2,1,,),2(),2(

)(),(,3,





kjijiji

kjikjiii







57

The Intensity Dependent 
Refractive Index 

• The incident optical field

• Third order nonlinear polarization

C.C)()(~   tieEtE 

)(|)(|)(3)( 2)3()3(  EEP 
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)(|)(|)(3)()( 2)3()1(TOT  EEEP 

The total polarization can be written as

One can define an effective susceptibility 

)3(2)1(
eff |)(|4  E

The refractive index can be defined as usual

eff
2 41 n
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By definition

where
20 |)(|

2



EcnI 

Innn 20 

)3(
2
0

2

2
12 

cn
n 
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Mechanism n2 (cm2/W) (esu) Response time (sec)

Electronic Polarization 10-16 10-14 10-15

Molecular Orientation 10-14 10-12 10-12

Electrostriction 10-14 10-12 10-9

Saturated Atomic
Absorption 10-10 10-8 10-8

Thermal effects 10-6 10-4 10-3

Photorefractive Effect large large Intensity dependent

)3(
1111

Typical values of nonlinear refractive index
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Material  Response 
time

Air 1.2×10-17

CO2 1.9×10-12 2  Ps

GaAs (bulk room 
temperature) 6.5×10-4 20 ns

CdSxSe1-x doped 
glass 10-8 30 ps

GaAs/GaAlAs 
(MQW) 0.04 20 ns

Optical glass (1-100)×10-14 Very fast

Third order nonlinear susceptibility of some material
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