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Nonlinearities in Metals

• A reasonable elementary model for a metal is an 
isotropic free electron gas. A consequence of 
this is that metals are opaque to visible radiation. 
For frequencies lower than the plasma 
frequency, the electromagnetic radiation can 
penetrate only for a small depth (skin depth) of 
the order of the wavelength and due to their 
symmetry, bulk metals lack of dipole sources for 
second harmonic production. 
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Nonlinearities in Metals

Within the skin depth of the incident 
electromagnetic field, there are, however, 
Lorentz forces on free (and to some degree 
also bound) electrons, as well as interband 
transitions, both of which lead to nonlinear 
bulk magnetic dipole polarization sources.
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Nonlinearities in Metals
. Further, the breaking of inversion symmetry 

and the large change in dielectric constant at 
the metal-vacuum interface introduces strong 
surface currents within a few Fermi 
wavelengths of the surface which produce 
electric quadrupole terms. These 
mechanisms are however very weak. This 
not withstanding second harmonic 
generation from the surface of metals was 
studied since the beginning. 
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Nonlinearities in metals
• In metals bulk production of dipole second harmonic

radiation is inhibited due to symmetry reasons and
only an electric quadrupole and a magnetic dipole
terms may be active

• These reasons do not exhist at surface due to the
lack of symmetry in a sheet region of the order of a
few Å’s thickness between vacuum and the metal. In
this case the discontinuity of the electric field is
important

• Therefore SHG, although has a very low efficiency
(~10-10) is used as a surface probe.
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Nonlinearities in metals
Free electron gas theory

The equation of motion for a free electron is
2

2
1 (1)d e

m cdt
     
 

r E v B

Damping is neglected for simplicity.

Clearly, the only nonlinear term in this equation is the Lorentz
force term. Since v << c in a plasma, the Lorentz force is
much weaker than the Coulomb force, and then (e/mc)v  B
in (1) can be treated as a perturbation in the successive
approximation of the solution.
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For a uniform plasma with an electronic charge
density , the current density is given by

   

    
1 2

1 2 (3)
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In a more rigorous treatment, we must also take into account
the spatial variations of the electron density  and velocity v.
Two equations, the equation of motion and the continuity
equation, are now necessary to describe the electron plasma:

  1=- p e
t m m c

           
v v v E v B

  0 (4)
t


  


v

and

where p is the pressure and m is the electron mass.

The pressure gradient term in the equation of motion is responsible
for the dispersion of plasma resonance, but in the following
calculation we assume p = 0 for simplicity.
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Then, coupled with (4), is the set of Maxwell’s equations
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We assume here that there is a fixed positive charge
background in the plasma to assure charge neutrality in the
absence of external perturbation. Successive approximation
can be used to find J as a function of E from (4) and (5). Let
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(1) (2)

,

= ,
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with

and

(1) (0) (1) j v

(2) (0) (2) (1) (1) (7)  j v v



12

We shall find the expression for as an
example assuming

Substitution of (6) into (4) and (5) yields
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The second-order current density is then given by

 

 

(0) 2 2
(2)

1 1 1 12 2 2

1 1

(2 )
2

(9)
4

i e ie
m m c

e
i m

 
        

 
 

J E E E B

E E



14

Neglecting for the moment the (·E)E term, we may derive for the
nonlinear polarization

   1 1 1 1 (10)NL     P E B E E

with

The term with  is sometimes referred as the “magnetic dipole” and
the one with  as “electric quadrupole” source.

Both terms are always polarized in the incidence plane (TM mode).

The first term is always present and is directed along

The second term arises only if the fundamental wave is polarized in
the incidence plane.

k
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Including the (·E)E term of (9), which can be transformed as:
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where is the plasma resonance frequency. With
(11), and the vector relation
the current density in (9) can be written as
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Eq.(9) shows explicitly that aside from the Lorentz
term, there are also terms related to the spatial
variation of E. They arise from the nonuniformity of the
plasma. In a uniform plasma, (0) = 0 and  · E = 0
from (11). This means that k is perpendicular to E and
therefore (E · )E also vanishes. The Lorentz term is
the only term in J(2)(2)
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Coming back to (9), we may now write

   1 1 1 1 (13)NL     P E E E E

instead of (10) where                             

In the bulk the electric field is divergenceless and only the first term
in (13) contributes: near the surface both terms are important.
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Adler for the first time speaks, for the centrosymmetric media, of two
source terms for SH, one due to the magnetic dipole, due to the
Lorentz force, and one due to the electric quadrupole, through the
Coulomb force.
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Jha used the model of the free electron gas in order to explain the SH in
the metals and for first he wrote the second order polarization with the two
terms, that represent the contribution of bulk and surface.
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We look first at the component of PNL parallel to the surface,
since is continuous across the surface, using translational
symmetry in the plane of the surface we find

;NLP


1E


 1 1 / , (14)z
NL z  P E 

which gives a Dirac delta function at the surface in the limit of a
step function equilibrium density profile. Thus there is an
effective current sheet radiating at 2 at the surface, and
following back the derivation of eq.(14) it is clear that results
from the accumulated charge at the surface, signaled by the
rapid variation in being driven by the component of the
electric field parallel to the surface. The magnitude of the
current sheet due to may be calculated in the free electron
theory, since eq.(13) may be integrated across the surface.

NLP


1 ,zE

NLP

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For the normal component of the situation is different. From
eq.(13) we find

NLP

 2 1
1 1 , (15)

z
z z z
NL z z

       
EP E E

which is ambiguous, since both  and change discontinuously
across the surface. Obviously, which appears in part because
of the rapid variation of the normal field and in part because the
response of electrons near the surface need not display inversion
symmetry (1), is more subtle in nature than We note that
even if the integral of eq.(15) could be performed, it is not clear
whether the current sheet should be placed just inside or just
outside the surface. This point is an ambiguity in the free
electron model.

(1) J.Rudnick and E.A.Stern, PR B4 (1971) 4274

1
zE

,z
NLP

.NLP

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We conclude that the free electron theory only leads
to physically meaningful results for the first order
fields if a step function profile is adopted for the
equilibrium electron density; in that limit, however,
well-defined predictions for the second harmonic
generation cannot be made. Of course, one would
certainly expect the free electron theory to be less
than accurate in the surface region where the actual
fields vary over distances on the order of a few Fermi
wavelengths; the point we wish to stress here is that
the theory is in a sense somewhat worse: it is
inherently ambiguous.

z
NLP
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The term E x B originating from the Lorentz force acts on the current
produced at the first order by B (it is nonlinear in B). It is a bulk
current in the metal and does not irradiate except if there is a
boundary.

The second term is a surface electric quadrupole term. It is present
in nonlinear reflection from a metal and originates from the
discontinuity of the normal component of E at the interface which
generates nonlinear currents. The surface currents are a tangential
component and a bulk one directed along z.

The SH polarization from the perpendicular and parallel surface
currents can be written as

( 2 ) ( ) ( ) ( )su rfa c e
z z za    P E E

and

(2 ) ( ) ( ) ( )surface
x x zb    P E E
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Rudnick and Stern argued from physical grounds that the
second harmonic current sheet should be placed outside the
bulk metal, and that its magnitude should be specified in terms
of parameters a and b of order unity.

These conclusions are borne out to some extent by the
application of the hydrodynamic theory of the electron gas to
the calculation of SHG. The sheet is called selvedge (Sipe,
Surf. Sci. 84, p. 75, 1979) and is smaller than . It is to be
placed outside the bulk metal.

The free electron theory does not place unambiguously the
current sheet.

J.Rudnick and E.A.Stern, PR B4 (1971) 4274
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The coefficients a and b

Sipe et. al. gave an explicit expression for 
the parameters a and b with a free-
electron hydrodynamic model and 
introduced an effective plasma frequency.

JJ.E.Sipe et al. Phys.Rev.B21(1980)4389
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Using quantum theory, Weber and Liebsch (Phys.
Rev. B36, 6411, 1987) showed that the sharp cutoff
of the charge density at the surface introduces
serious errors in the calculation of the perpendicular
nonlinear surface currents.

Their calculation predicted a 1-2 orders of magnitude
larger surface SH polarization.

The early experiments by Quail and Simon (Phys.
Rev. B31, 4900, 1985) on the Al/glass and Ag/glass
interfaces gave quite low values for a of the order of
1, however, this has to be attributed to the reduced
SHG at the metal/glass interface compared to the
metal/vacuum interface.
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On the other hand, by quantitative measurements of the SH
light from an Al surface in ultrahigh vacuum (UHV) at a laser
wavelength of  = 1.064 m, Murphy et al. found a strong
enhancement of the SHG at large angles of incidence. They
derived a = -36 -9i, in very good agreement with the
theoretical prediction. Furthermore, these experiments proved
that for larger incident angles the SHG is determined mainly
by the perpendicular nonlinear surface current for the
vacuum/metal interface.

R. Murphy, M. Yeganeh, K. Song, E. Plummer, Phys. Rev. Lett. 63, 318 (1989).
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Despite the good agreement of theory and experiment on the second
harmonic response normal to the surface, significant discrepancies
are evident at smaller incident angles where signs of an anisotropic
SH response are detected.

This anisotropy can only arise from interband transitions, i.e. from the
periodic lattice potential, which had not been included in the theory.

H. Tom, G. Aumiller, Phys. Rev. B33, 8818 (1986).
K. Pederson. O. Keller, J. Opt. Spectr. Am. B6, 2412 (1989).
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Strong azimuthal anisotropy has been observed on a number of
metal surfaces (see table).
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Surface Element Reference

(111) Al

Cu

Ni
Ag

Au

R. Murphy, M. Yeganeh, K. Song, E. Plummer, Phys. Rev. Lett. 63, 318 (1989)
S. Janz, K. Pedersen, H. van Driel, Phys. Rev. B44, 3943 (1991)
Z. Ying, J. Wang, G. Andronica, J. Yao, E. Plummer, J. Vac. Sci. Technol. A11, 2255 (1993)
H. Tom, G. Aumiller, Phys. Rev. B33, 8818 (1986)
J. Bloch, G. Lubke, S. Janz, H. van Driel, Phys. Rev. B45, 12011 (1992)
R. Anderson, J. Hamilton, Phys. Rev. B38, 8451 (1988)
R. Bradley, R. Georgiadis, S. Kevan, G. Richmond, J. Vac. Sci. Technol. A10, 2996 (1992)
C. Li, L. Urbach, H. Dai, Phys. Rev. B49, 2104 (1994)
E. Wong, G. Richmond, J. Chem. Phys. 99, 5500 (1993)
E. Wong, K. Friedrich, G. Richmond, Chem. Phys. Lett. 195, 628 (1992)
R. Georgiadis, G. Richmond, J. Chem. Phys. 95, 2895 (1991)
E. Wong, G. Richmond, J. Chem. Phys. 99, 5500 (1993)
A. Friedrich, C. Shannon, B. Pettinger, Surf. Sci. 251/252, 587 (1991)
V. Daniel, A. Koos, G. Richmond, J. Phys. Chem. 94, 2091 (1990)
D. Koos, G. Richmond, J. Phys. Chem. 96, 3770 (1992)

(110) Cu

Ag

Au

M. Hoffbauer, V. McVeigh, M. Zuerlein, J. Vac. Sci. Techol. B10, 268 (1992)
J. Woll, G. Meister, U. Barjenbruch, A. Goldmann, Appl. Phys. A60, 173 (1995)
V. Daniel, D. Koos, G. Richmond, J. Phys. Chem 94, 2091 (1990)
D. Koss, V. Shannon, G. Richmond, Phys. Rev. B47, 4730 (1993)
L. Urbach, K. Percival, J. Hicks, E. Plummer, H. Dai, Phys. Rev. B45, 3769 (1992)
S. Reiff, J. Bloch, Surf. Sci. 345, 281 (1996)
G. Lupke, G. Marowsky, R. Steinhoff, A. Friedrich, B. Pettinger, D. Kolb, Phys. Rev B41, 6913 (1990)

(001) Al

Cu

Ag
Au

K. Pederson, O. Keller, J. Opt. Spectr. Am. B6, 2412 (1989)
D. Koss, V. Shannon, G. Richmond, Phys. Rev. B47, 4730 (1993)
D. Koss, V. Shannon, G. Richmond, Phys. Rev. B47, 4730 (1993)
R. Vollmer, M. Straub, J. Kirschner, Surf. Sci. 352-354, 684 (1996)
D. Koss, V. Shannon, G. Richmond, Phys. Rev. B47, 4730 (1993)
D. Koss, V. Shannon, G. Richmond, Phys. Rev. B47, 4730 (1993)
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Dependence on fundamental beam polarization 
direction 

• A typical apparatus is shown in
the figure

• Since the surface nonlinear
sources are in the simplest
theory proportional to (·E)E,
then incident fields polarized
only in the plane of the surface
(normal to the plane of
incidence) do not contribute to
the second harmonic signal.

• However the bulk terms
proportional to E×H lead to
harmonic generation for all
incidence polarizations
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• Neglecting bulk terms, a [ cos ]4 dependence on the
polarization is predicted, where  is the electric field angle
relative to the plane of incidence.

• Deviations from this relation are indicative of contributions
from the bulk term, and in particular the ratio

• M = ISH (°) / ISH (°)

• yields information about the relative strengths of the surface
versus bulk terms

• F.Brown et al., PRL 14 (1965) 1029
• F.Brown and R.E.Parks, PRL 16 (1966) 507
• N. Bloembergen et al., PR 174 (1968) 813

Dependence on fundamental beam 
polarization direction 
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High Pass band filter

800 nm
150 fs
1 kHz

Neutral density filters
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First experimental results
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Summary of second harmonic production in metals

The first theoretical prediction of the SHG of light from a free-electron gas was
presented by Jha (1) in 1965. Later, the first conclusive experimental observation of
the SHG from a silver film excited by a ruby laser light was reported by Brown et
al.(2,3). Research in SHG from metal surfaces has been expedited by discoveries of
the enhanced scattered SHG from roughened silver surfaces (4), from molecular
monolayers absorbed on a silver surface (5,6), and from nonlinear surface-plasmon
effects (7-9). Exploiting SHG from the surface of centrosymmetric media as a new
probe for studies of surface physics has been demonstrated by several authors (10).

(1) J.Jha, Phys. Rev. 140, A2020 (1965).

(2) F. Brown, R.E. Parks, A.M. Sleeper, Phys. Rev. Let. 14, 1029 (1965).

(3) F. Brown, R.E. Parks, Phys. Rev. Lett. 16, 507 (1966).

(4) C.K. Chen, T.F. Heinz, D. Ricard, Y. Shen, Phys. Rev. Lett. 46, 145 (1981).

(5) C.K. Chen, T. Heinz, D. Ricard, Y. Shen, Phys. Rev. Lett. 46, 1010 (1981).

(6) G. Boyd, Y. Shen, Opt. Lett 11, 97 (1986).

(7) H. Simon, D. Mitchell, J. Watson, Phys. Rev. Lett. 33, 1531 (1974).

(8) J. Quail, J. Rako, H. Simon, R. Deck, Phys. Rev. Lett. 50, 1987 (1983).

(9) J. Quail, H. Simon, J. Appl. Phys. 56, 2589 (1984).

(10) H. Tom, C. Mate, X. Zhu, J. Crowell, T. Heinz, G. Somorjai, Y. Shen, Phys. Rev. Lett. 52, 348 (1984).
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An excellent review of SHG from metal surfaces is by Sipe &
Stegeman (1).

The sources of SHG on a metal surface consist of a “volume”
current density which extends over skin depth and a “surface”
current density penetrating only a few Fermi wavelengths into a
metal (the so-called selvedge region).

The free-electron model is inadequate to describe the electron
dynamics in the selvedge region. Rudnick and Stern (2) first pointed
out the limitations of the free-electron model in describing the SHG
surface-current sources and proposed two phenomenological
parameters a and b to estimate the size of these current sources.

(1) J. Sipe, G. Stegeman, in Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces, ed. by
V. Agranovich and D. Mills (North-Holland, Amsterdam, 1982), p.661.

(2) J. Rudnick, E. Stern, Phys. Rev. B4, 4274 (1971).
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Sipe et. al (1) have given an explicit expression for these
parameters with a free-electron hydrodynamic model and have
introduced an effective plasma frequency. They have done
calculations with b = -1 for a smooth metal surface, allowing
the parameter a to be determined by experiments. This theory
along with the experimental results for the SHG in a total-
internal-reflection (TIR) geometry from a prism-metal interface
over a broad range of incident angles can successfully
determine the parameter a of noble metals and aluminium films
(2,3).

(1) J. Sipe, V. so, M. Fukui, G. Stegeman, Phys. Rev. B21, 4389 (1980).

(2) J. Quail, H. Simon, Phys. Rev. B31, 4900 (1985).

(3) C. Tzeng, J. Lue, Surf. Sci. 192, 491 (1987).
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In 1969 , observation of a strong 
dependence of SHG signal at silver 
surfaces on the amount of absorbed silver 
was the first indication of the surface 
sensitivity of SHG [1]. 

Rudnick and Stern [2] realized that the 
surface sensitivity of SHG was primarily 
attributed to the broken inversion 
symmetry of the surface rather than the 
quadrupolar effects.

(1) F.Brown and M.Matsuoka, Phys.Rev. 185(1965)985
(2) J.Rudnick and E.A.Sterns, Phys.Rev. B4(1971)4274
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Guyot-Sionnest et al. [1] estimated that the 
contribution from the bulk nonlinearity to 
SHG was an order of magnitude weaker 
than the surface nonlinearity in 
centrosymmetric media with large optical 
dielectric constant such as metals and 
semiconductors.

(1) P.Guyot-Sionnest et al.,hys.Rev. B33(1986)8254
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Composite materials
• It is possible to combine two or more

optical materials in such a manner that the
effective nonlinear optical susceptibility of
the composite material exceeds those of
its constituents.

• Some structure is shown in the figure. In
each case, the characteristic distance
scale over which the constituent materials
are mixed is much smaller than an optical
wavelength.

• Consequently, the propagation of a beam
of ligth through such material can be
described by spatially averaged values of
the linear and nonlinear refractive indices
obtained by performing suitable volume
averages.

• J.E. Sipe and R.W.Boyd, PR A46 (1992) 1614; JOSA 
B11 (1994) 297

• G.L.Fischer et al. PRL 74 (1995) 1871
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Structures
• If the two constituent

materials of the composite
posses different linear
refractive indices, the
electric field of the incident
laser beam will become
spatially nonuniform within
the material. Under proper
conditions, the electric field
amplitude will become
concentrated in the more
nonlinear constituent of the
composite, resulting in an
enhanced overall nonlinear
optical response.
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• Much of the early work on composite nonlinear 
optical materials concerned metallic colloids.

• For such materials, an enhancement of the 
electric field occurs in the vicinity of each 
metallic particle. 

• The enhancement is particularly large when the 
laser frequency is near that of the surface 
plasmon resonance of the metallic particle

• D.Ricard et al. Opt. Lett. 10 (1985) 511
• F.Hache et al. Appl. Phys. A47 (1988) 347
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Spherical particles a <<  dispersed with a very low volume fraction f << 1.
A single spherical inclusion experiences a local field Eloc
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and the field inside it is

If the inclusion is made of a metal with

one may choose the host and the inclusion dielectric constant such that

corresponding to the plasmon resonances, thus obtaining resonant enhancement
effects. Thus the inclusion can experience an enhanced local field that, in case of
several inclusions randomly dispersed in the host, leads to an effective dielectric
constant eff that satisfies

where f is the volume fraction of the inclusion material.
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Here we consider the optical Kerr effect of randomly interdispersed
composite materials which, for monochromatic beams, is
represented by a third-order polarization P(3) at frequency ω induced
by an electric field E at the same frequency,

It may be described by an optically induced change of the optical
dielectric constant

  2(3) (3)( ) 3 , , ( ) ( ) (38)P E E       

2(3)12 ( ) . (39)E   
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For metal inclusions in the limit f << 1, so that each metal
nanoparticle is entirely surrounded by the host dielectric medium and
the interparticle spacing is large with respect to the size of the
nanoparticles and much smaller than λ, Flytzanis et al [1,2,3],
assuming that the inclusion material has a nonlinear susceptibility
χ(3), gave an expression for the change in the inclusion dielectric
constant

[1] C. Flytzanis, F. Hache, C. Klein, D. Ricard, P. Roussignol, Prog. Opt. XXIX, 321 (1991)
[2] K. Roustagi, C. Flytzanis, Opt. Lett. 9, 344 (1984)
[3] D. Ricard, P. Roussignol, C. Flytzanis, Opt. Lett. 12, 511 (1985)
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where

or

where

εm and εd being the dielectric constant of the metal particles and the
surrounding dielectric respectively and the third-order nonlinear
susceptibility of the metal particle itself. can be separated into
three contributions [1]:

χm
(3) = χintra

(3) + χinter
(3) + χva

(3)

(3)
m

(3)
m

[1] F. Hache, D. Ricard, C. Flytzanis, J.O.S.A. B3 1647 (1986).
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The first and second terms result from the familiar intraband and
interband transitions.

The third contribution is due to the modification of the populations of
the electrons resulting from the large increase in the electron
temperature caused by resonant absorption of photons, but before
thermalization. After the lattice is heated up there is an additional
term which is a much slower process (ns or longer).

Values of of the order of 5 × 10−8 esu have been measured in
gold with f ~ 10−5 − 10−6 .

(3)
thermal

(3)
eff



48

Measurements of have been made by Liao[1] for increasing
values of f and are shown in the figure. The susceptibility increases
linearly with f up to about f 0.15, beyond which it increases much
more quickly to decrease after f = 0.28 as the percolation threshold
is approached. Mie scattering resonances are identified as the
cause of this behaviour.

[1] H. B.Liao et al. Appl. Phys.Lett. 70(1997)1

(3)
eff


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Agarwal and Dutta Gupta [1], assuming Kerr-type nonlinearity in the
inclusions, obtained an effective cubic susceptibility given by(3)

eff

Other alternative structures have been proposed, such as those
obtained by alternating layers of two different materials [2,3]. In this
case, a prediction of enhanced nonlinear response has been given
for suitable polarization of light and it has been shown that metallic
composites with fractal structures have large nonlinear
susceptibilities [4–6]; such structures take advantage of their
localization properties of the electromagnetic field [7].

[1] Agarwal G S and Gupta S D 1988 Phys. Rev. A 38 5678

[2] Boyd R W and Sipe J E 1992 Phys. Rev. A 46 1614

[3] Boyd R W and Sipe J E 1994 J. Opt. Soc. Am. B 11 297

[4] Butenko A V, Shalaev V M and Stockman M I 1988 Sov. Phys.—JETP 7 60

[5] Butenko A V, Chubarov P A, Danilova Y E, Karpov S V, Popov A K, Rautian S G, Safonov V P, Slabko V
V, Shalaev V and Stockman M I 1990 Z. Phys. D 17 283

[6] Shalaev V 2002 Optical Properties of Nanostructured Random Media (Berlin: Springer)

[7] Bertolotti M, Masciulli P and Sibilia C 1994 Opt. Lett. 19 777
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Boyd and Sipe considered layered composites comprising
alternating layers of two or more constituents, with each layer
having a width << λ. In the case of an electric field parallel to the
surface, the effective nonlinear susceptibility is

where is the nonlinear susceptibility of the ith constituent.

The case of an electrical field polarized perpendicular to the layers
is more interesting. The effective third-order nonlinearity is given
by

(3)
eff

nl
i

where
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Conclusions 

Considering metallic inclusions, non linearities are effective on a
nanometric scale and may be strongly enhanced by plasmon
resonances.

Nonlinearities can be controlled in nanostrustured materials.
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