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Outline 

 Optical antennas: Basics 
 
 

 
 Playing with modes 

 
 
 
 Optical antennas for Enhanced  

   Spectroscopy: SERS and SEIRA 
 
 
 
 More applications of Optical antennas 
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Different types of radio antennas 

Omni-directional antenna 
often used at master station sites 

Directional Yagi antenna 
Commonly used at remote field sites 

/4 antenna 

/2 Dipole 

Yagi 

Parabolic 

Horizontal radiation 
pattern 

Horizontal radiation 
pattern 

Vertical radiation 
pattern 



Biconical antenna 

Combilog antenna 

Horn antenna 
Yagi-Uda antenna 

Monopole antenna 

Half wave 
dipole antennas 

Parabolic antenna Active loop antenna 

Radio Frequency Antennas 
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Scaling down in size  Scaling down in wavelength  

Visible light  Optical antenna  Nanoantenna 

/2 nanoantenna 
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Optical nanoantennas 

  Design of plasmonic nanoparticles: size, shape, interactions, ... 
 

Analogy with radio-wave antennas 
Mühlschlegel et al. Science 308, 1607 (2005) 
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  Applications: biosensing, nonlinear optics / SERS, fluorescence, 
quantum optics,... 
 

Van Hulst, ICFO - Single 
molecule, scanning probe 

Quidant, ICFO 
Antenna-gap sensing 

Halas, Nordlander 
Plasmonic photodetector 

Alivisatos, Giessen 
Pd-antenna sensor 

Capasso 
Antenna QCL 

Optical nanoantennas 
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Absorption 

Scattering 

Extinction 

The simplest optical antenna: a metallic particle 

Enhancement of absorption and emission:  
Bringing effectively the far-field into the near-field  
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 Metal particle plasmons 

Standard textbooks: 
- Kreibig, Vollmer, Optical properties of metal clusters, Springer1995 
- Bohren, Huffmann, Absorption and scattering of light by small particles, Wiley 1983 
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Metallic nanorod as a /2 optical antenna 

L= /2  

In analogy to a /2 radiowave antenna, 

we call a nanosized rod-like metallic 

structure a /2 optical antenna .  

YES BUT, it is just similar, and not equal because of plasmons 
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Bulk plasmons 
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A  plasmon  is  a  collective  oscillation  of  the  conduction  electrons  

Bulk plasmon: 
The rigid displacement of the 
electrons induces a dipolar moment 
and an electric field opposing the 
displacement 

(t):  

All the electrons are involved in the oscillation. The energy of those oscillations in 
typical metals might be triggered out by external probes. 
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Surface plasmons 

2
p

Electromagnetic  surface  waves  which  exist  at  the  interface  between  2    
media  whose     have  opposite  sign.        
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Drude  model  

Surface  plasmons  

Dispersion  relation  
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Surface plasmons 
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Methods of SPP excitation 

nprism > nL !! 
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 Confined fields:       

      - Nanooptics 
 
 Enhanced field:  

      - Lighting rod effect 
 
 Tunability: 

      - Geometry 
 
 Coupling: 
 
 Wavelength range:   

       - Visible  Infrared 

Nano-optics with localised plasmons 

Characteristics   Resonances dependence 
with  size  

with  material  

with  shape  

with  coupling  

Confined 
plasmon 

+ + + 

k 

k

p 

ck 

s 

+  +    +  +  
Plasmon polariton 
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Light-particle interaction 

General case:  <= a 

Phase shifts in the particles: 
retardation, multipole excitations 

k  

E t t0
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E
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E t t0

Quasi-static case:  >> a 

Homogeneous polarization: 
All points of an object respond simultaneously 
to the incoming (exciting) field. 
 
        Helmholtz eq. reduces to Laplace 
equation: 
 
 
 
         el. field: 

k  
2a  

02
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Small sphere 

The electric fields inside (E1) and outside 
(E2) the sphere can be obtained from the 
scalar potentials 

11E

22E 02
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Solve Lapace equation in spherical coordinates: 

Boundary conditions: )(11 ar

)(2
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rr
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continuity of the tangential 
electric fields 

continuity of the normal 
component of the electric 
displacement 

02 sca tter
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Small sphere 

cos000 rExEHomogeneous  electric field along x-direction: 

The following potentials satisfy the Laplace equation and boundary 
conditions: 

The field is independent of the azimuth angle  which is a result of the symetry implied by the 
direction of the applied electric field.

EFrom   we obtain 
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Small sphere 
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The field outside the sphere is the superposition of the applied field and the field of 
an ideal dipole at the sphere origin  
 
The dipole moment is given by 
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Polarizability of the sphere: 
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020 EpGenerally the dipole moment is defined by  
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Small sphere 

Radiation zone: 
kr >> 1 (r>>
 

Near-field zone: 
kr << 1 (r << 
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We can describe the light scattering of a small sphere by  plane wave scattering at an ideal 
point dipole with dipole moment derived on the previous slides. The dipole field is given by: 
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90° 

0° 180° 

270° 

Far-field scattering  
(transverse fields) 

Far- and near-field calculations for a sphere a <<  

E in
k  
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Pointing vector 
always radial! 

Near-field scattering 
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Pointing vector is 
not always radial 
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Absorption cross section: 

Csca
8
3
k4a6 m

2 m

2
k4

6
2 Im

2
Im4 3 kkaC

m

m
abs

Scattering cross section: 

- stronger scattering at shorter wavelength (Rayleigh scattering,  blue sky) 
 
- for large particle extinction is dominated by scattering whereas for small particles it is 
associated with absorption 
 
- scattering of single particles <10nm is difficult to measure (low signal/noise and low 
signal/background) 

Optical cross sections of small spheres  

4

6aC sca

3aCabs

Integrating the Poynting vector Ssca (Sabs) over a close spherical surface we obtain the 
totally scattered (absorbed) power Psca (Pabs) from which we can calculate the scattering 
(absorption) cross section Csca = Psca/Ii  (Cabs = Pabs/Ii): 
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Dielectric function of metals 

Collective free electron oscillations (plasmons) 

plasma frequency 
(longitudinal oscillation) 

 = -2 
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Excitation of a plasmon by a pulse 

Rice University, Houston Lecture given by J. Aizpurua at the Winter College on Optics, Trieste, Feb. 2012 



 Localised Surface Plasmon: a swimming pool of e- 
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Absorption 

Scattering 

Extinction 

The simplest optical antenna: a metallic particle 

Enhancement of absorption and emission:  
Bringing effectively the far-field into the near-field  
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frequency (cm-1) 1000 10000 

wavelength  ( m) 10 1 
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Lycurgus Cup  

(British Museum; 4th century AD)   

Illumination: from outside                              from inside 

            (strong absorption at and below 520 nm) 

Nanotechnology with plasmonics: before the nanorevolution 
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Extinction  vs. scattering 
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Near-field versus far-field 

Near-field distribution Far-field distribution 

Spectral information 

50 nm gold 
nanoparticle 
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Near-field versus far-field 
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Higher multipole resonances in quasistatic limit 

1
11

L p

medium
l

l

In the quasistatic limit the Mie theory yields the resonance positions of the higher 
multipoles at 

However, higher multipoles in the quasistatic limit are negligible compared to 
the dipole contribution (l=1) 

p1

1

2

L

1
L medium

l
l

Drude 

medium= 1 
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Aizpurua et al. Physical Review B 71, 235420 (2005) 

Antenna modes: 
 D=80nm,L=200nm;  ratio=2.5 

Higher order modes: l  

 

Dipole response: 
L  /2 

-­Q                                    Q  
-­  
-­  -­  
-­  -­   + 

+ 
+ + + 

~  L  
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An  alternative  to  excite  high  order  modes  in  a  sphere  

Probability   of   losing   energy  
h    for   a   50-­keV   electron  
moving  at  grazing  incidence  
on   an   aluminum   sphere   of  
radius  a=10nm  

e  

Ferrell  and  Echenique,  PRL  55,  1526  (1985)  
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Mie-theory 

Mie-theory is an 
electrodynamic theory for 
optical properties of  
spherical particles. The 
solution is divided into two 
parts: the elctromagnetic one 
which is treated from first 
principles (Maxwell 
equations) and the material 
problem with is solved by 
using phenomenological 
dielectric functions taken 
from experiments or model 
calculations 

See also Bohren/Huffman 

Kreibig/Vollmer 
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Mie theory - results 

Kreibig/Vollmer 

Fig. 2.6 shows farfield distribution at the 
surface of a large sphere centered at 
the small cluster 
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90° 

0° 180° 

270° Pointing vector 
always radial! 

Scattering characteristics (far-field) 

Small particle Large particle (Mie calculation) 

Strong forward scattering 
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Spherical plasmons:  
 

2 1l p
l

l

a  

l=1  mode  

2

21 p

Drude-like metal 
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Effect of finite size on the resonant frequency 

Jin et. al., Science 294, 1901 (2001) 

same shape, different size 
redshift due to higher multipoles 

Lecture given by J. Aizpurua at the Winter College on Optics, Trieste, Feb. 2012 



mxyzm

m
xyz L

abc
3
4

 Shape: Polarizability of small ellipsoids 

geometrical factors 

3
1

zyx LLLsphere: 

zyx LLLgenerally: 

3 resonances at  

quasistatic approximation: 
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For a geometry like above: 

zyx

Lecture given by J. Aizpurua at the Winter College on Optics, Trieste, Feb. 2012 



0

20

40

60

80

100

120

300 400 500 600 800 1200
0

4

8

        E0 || long axis
   10 nm / 3 nm
 100 nm / 30 nm

  

|E
| /

 |E
0|

    E0 || short axis

 

 

 

  [nm]

Ei  

ki  

E2 

l = 528nm 

b 

a 

E2 
b a 

l = 340 nm 

Ei  

ki  

Silver ellipsoid illuminated by a plane wave 

size shifts dipole resonance for  

E0 || long axis  

Calculation by J. Renger, TU Dresden 
Lecture given by J. Aizpurua at the Winter College on Optics, Trieste, Feb. 2012 



Plasmon resonances:dependence on the geometry 
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Control over the plasmon frequencies by playing with particle shapes and 
coupling 

Nanorods,  nanoshells,  
nanorings,  dimers,.....  

Coupled  
systems  

Apertureless  
NSOM  

Nanometrology,  sensing,  
spectroscopy  

More complex geometries 
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Donostia International Physics Center (DIPC) 

boundary element method 
 JGA and Howie 

finite difference in the time domain 
 Joannopoulos photonic crystals 

transfer matrix approach 
 Pendry 

finite 
geometries 

periodic 
systems 

convergence 
for high 

dielectric contrast 
(e.g., in metals) 

effective 
dimensionality 
of the problem 

discrete-dipole approximation 
 Purcell+Pennypacker: optical modes of grains 
 Martin: Green-function formulation 

multiple scatter ing 
 Ohtaka: LEED-like methods to photons 
 Wang, Stefanou, Sheng: photonic crystals 
 JGA: finite systems 

plane wave expansions 
 Leung 

Numerical solutions to the 3D electromagnetic problem 

Lecture given by J. Aizpurua at the Winter College on Optics, Trieste, Feb. 2012 



medium j 

jS

r
c

i

j
je

r
G

 1r

Boundary Element Method 

i
c

E r A r r

ext   
j

j j
S

d GA r A r s r s h s

ext   
j

j j
S

d Gr r s r s s

(1 and 2 refer to the interface sides). The surface integrals are now 
discretized using N representative points si. This leads to a system of 8N 
linear equations with h1(si), h2(si), 1(si), and 2(si) as unknowns. 

The boundary conditions lead to a set of surface integral equations with the 
interface currents hj and charges j as variables. For example, the continuity of 
 leads to 

ext ext
1 1 2 2 2 1   ,

jS

d ' G ' ' G ' 's s s s s s s s s

 García de Abajo and Howie, PRB 65, 115418 (2002)  García de Abajo and Aizpurua, PRB 56, 15873 (1997) 
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An example of Optical Antenna: 
Optical properties of metallic nanorings 

d/a  smaller  -­>  red  shift  

Aizpurua et al. Phys. Rev. Lett. 90, 057401 (2003) 

Disk   Nanoring  
d 

a 
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Optical properties of metallic nanoshells 
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Modes in a nanoring. The twisted slab 
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Field-enhancement in a nanoring 
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Biconical antenna 

Combilog antenna 

Horn antenna 
Yagi-Uda antenna 

Monopole antenna 

Half wave 
dipole antennas 

Parabolic antenna Active loop antenna 

Radio Frequency Antennas 

Lecture given by J. Aizpurua at the Winter College on Optics, Trieste, Feb. 2012 



Different types of radio antennas 

Omni-directional antenna 
often used at master station sites 

Directional Yagi antenna 
Commonly used at remote field sites 

/4 antenna 

/2 Dipole 

Yagi 

Parabolic 

Horizontal radiation 
pattern 

Horizontal radiation 
pattern 

Vertical radiation 
pattern 
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Taminiau et al.,  
Nature Photonics 2, 234 (2008) 

/4 optical antenna 

Neubrech et al.,  
App. Phys. Lett. 89, 253104 (2006) 

/2 nanoantenna 
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Different types of radio antennas 

Omni-directional antenna 
often used at master station sites 

Directional Yagi antenna 
Commonly used at remote field sites 

Vertical 

Dipole 

Yagi 

Parabolic 

Horizontal radiation 
pattern 

Horizontal radiation 
pattern 

Vertical radiation 
pattern 
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Taminiau et al.,  
Optics Express 14, 10858 (2008) 

 Yagi-Uda antenna 
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Different types of radio antennas 

Omni-directional antenna 
often used at master station sites 

Directional Yagi antenna 
Commonly used at remote field sites 

Vertical 

Dipole 

Yagi 

Parabolic 

Horizontal radiation 
pattern 

Horizontal radiation 
pattern 

Vertical radiation 
pattern 
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N. Mirin and N. Halas, Nano Letters 9, 1255 (2009)  

Parabolic-like optical nanoantennas 
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Nature 453, 731 (2008) 

Bowtie antennas 

Taminiau et al.,  
Nature Photonics 2, 234 (2008) 

/4 optical antenna 
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Plasmonic antennas 
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Thank you for your attention! 
 

http://cfm.ehu.es/nanophotonics 
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