
2328-6

Preparatory School to the Winter College on Optics and the Winter College on 
Optics: Advances in Nano-Optics and Plasmonics 

M. Centini

6  - 17 February, 2012

SAPIENZA Universita� di Roma  
Roma 
Italy

 

 

 

Direct Space Integral Equation Method for Numerical Investigation of Linear 
and Nonlinear Optical Properties of Arbitrary Shaped Nanostructures



Direct Space Integral Equation Method for Numerical Investigation of 
Linear and Nonlinear Optical Properties of 

Arbitrary Shaped Nanostructures

M.Centini

SAPIENZA Universita’ di Roma, Roma, Italy

Winter College on Optics:
Advances in Nano-Optics and Plasmonics

(6-17 February 2012)



OUTLINE

1) Theoretical approach – description of the integration method;

2) Second harmonic generation in noncentrosymmetric nanocrystals;

3) Second harmonic generation in metal nanoparticles: Surface and bulk 
contributions;

4) EXAMPLES: 
- Second Harmonic Generation in Gold Nanoantennas, Bulk 
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We consider a material system of arbitrary shape embedded in a homogeneous, non 
magnetic, dielectric medium with relative permittivity εb. 

εεεεb

( ), ,rρ ω


( ),J r ω
 

Properties of the object are described by an 
effective current density JJ and charge density ρ.

Th –Fourier transforms of the four Maxwell 
equations are:

( ) ( )0, , ,    (3)E r i H rω ωµ ω∇× =
  

( ) ( ) ( ) ( )0, , , ,    (4)bH r i E r J rω ωε ε ω ω ω∇× = − +
    

( ), 0,    (2)B r ω∇⋅ =
 

( ) ( ) ( )0 , , ,   (1)b E r rε ε ω ω ρ ω∇⋅ =
  

0 0
ˆwith:    , .bD E B Hε ε µ= =

   

C. Girard, Rep. Prog. Phys. 68 (2005) 1883–1933



For the electric field, we can proceed as follows: from eq. (3) we have

( ) ( )0, , ,E r i H rω ωµ ω∇×∇× = ∇×
  

And substituting eq. (4) we obtain:

( ) ( ) ( ) ( )0 0, , , ,    (5)bE r i i E r J rω ωµ ωε ε ω ω ω ∇×∇× = − + 
    

We then apply the identity:

( ) ( )( ) ( )2, , , ,E r E r E rω ω ω∇×∇× = ∇ ∇⋅ −∇
       

And eq. (5) becomes:

( )( ) ( ) ( ) ( ) ( )2
0 0, , , , ,    (6)bE r E r i i E r J rω ω ωµ ωε ε ω ω ω ∇ ∇⋅ −∇ = − + 

        



Finally we introduce the following relationship between charge,
current and polarization densities:

( ) ( ), , ,r P rρ ω ω= −∇ ⋅
  

( ) ( ), , ,J r i P rω ω ω= −
  

( ) ( ) ( ) ( )
( )
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2
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c

ωω
ω ε ω ω ω µ ω

ε ε ω

 ∇⋅
∇ + = − −∇  

 

      

And equation (6) becomes:

which can be written as:

( ) ( )
( )

( )
2 2

2

2 2
0

1
, , ,    (7)b

b

E r P r
c c

ω ω
ε ω ω ω

ε ε ω

   ∇∇
∇ + = − + ⋅  
   

   



If we define the following operators:

( )

( )

2 2
0

2
0

;

1
;

b

b

O k

Q k

ε ω

ε ω

 = ∇ + 
 

= + ∇∇ 
 



 

The equation (7) can be rewritten as:

( ) ( )
0

1
, , ,    (8)OE r QP rω ω

ε
= −

   

with k0=ω/c

we can express the particular solution of (8) as follows:

( ) ( ) ( ) ( )1 1

0 0

1 1
, , ', ' ',E r O Q P r O Q P r r r drω ω ω δ

ε ε
− −= − ⋅ = − ⋅ −

          



Where we defined the field-susceptibility tensor:

( ) ( )1
0 , ', ' ,S r r O Q r rω δ−= − −

    

NOTE: Impossibility of interchanging the operators the integral equation when 
the integrand becomes singular, i.e. when r  r’ requires further analysis and 
it is responsible of an additional source term (it will be discussed later).

( ) ( ) ( ) ( ) ( )1
0

0 0

1 1
, ', ' ' , ', ', ',E r O Q P r r r dr S r r P r drω ω δ ω ω

ε ε
−= − ⋅ − = ⋅ 

           

Operator O-1 can be moved inside the integral if the integrand  is not singular:



( ) ( ) ( ) ( )0 0

0

1
, , , ', ', ',E r E r S r r P r drω ω ω ω

ε
= + ⋅

       

The general solution is obtained by adding the solution of the homogeneous 
equation i.e. the field in the absence of the nanostructure.

Incident field
Scattered field

If the nanostructure can be described by a macroscopic dielectric susceptibility we 
can write:

( ) ( ) ( )0 0', ', ', ,bP r r E rω ε χ ω ω=
   

Where χ0b is the difference between the dielectric constant of the nanostructure and 
that of the surroundings:

( ) ( )0 ', ',b r br rχ ω ε ω ε= −
 



( ) ( ) ( ) ( ) ( )0 0 0, , , ', ', ', ',    (9)bE r E r S r r r E r drω ω ω χ ω ω= + ⋅
        

The next step is to give an explicit expression for the S0 operator:

( ) ( )1
0 , ', ' ,S r r O Q r rω δ−= − −

    

For the operator O
it is known that:

( ) ( ) ( )

( )

2 2
0 0

2 2
0

, ', , ', ' ;

 

b b b

b b

OG r r k G r r r r

with k k

ω ω δ

ε ω

 = ∇ + = − − 
=

      

Where G0 is the scalar green function for the Helmholtz equation:

( )
'

0 , ', ;
4 '

bik r r

b

e
G r r

r r
ω

π

−

=
−

 
 

 

The formal solution is:



Thus:
( ) ( )1

0 , ', ' ;bG r r O r rω δ−= − −
   

( ) ( ) ( ) ( )1 1
0 0, ', ' ' , ', ,bS r r O Q r r QO r r QG r rω δ δ ω− −= − − = − − =

           

And finally:

Commutation between the operators is not possible if r->r’. This operation is 
responsible for the appearance of an extra term and will be discussed later.

( )
'2

0
0 2

1
, ', ;

4 '

bik r r

b

k e
S r r I

k r r
ω

π

− 
= + ∇∇  − 

   
 

S0 can be evaluated by calculating the following expression:



We define the Green dyadic for the electric field:

( )
'

2

2 2

2 2 2 4

1 1
, ',

4 '

1 3 3
;

4

 '

b

b

ik r r

E

b

ik R

b b b

b b

e
G r r I

k r r

ik R ik R k R e
I I RR

k R k R R

where R r r

ω
π

π

− 
= + ∇∇ =  − 

 − − −
= + + 
 

= −

   
 

 

  

( ) ( )2
0 0, ', , ', ;ES r r k G r rω ω=
   

We have:

NOTE: The Green dyadic contains both far field ( proportional to 1/R) and near field 
(proportional to 1/R2 and 1/R3)

In cartesian coordinates:

xx xy xz

yx yy yz

zx zy zz

G G G

G G G

G G G

 
 
 
 
 



The equation for the electric field becomes:

( ) ( ) ( ) ( ) ( )2
0 0 0, , ', , ', ', ',b E

V

E r E r k r G r r E r drω ω χ ω ω ω= + ⋅
        

V is the volume of the nanostructure.
As mentioned before this expression is not valid for r=r’. A small volume V
containing r must be excluded. The commutation of operators O and Q generates an 
additional source dyadic term L depending on the shape of the exclusion volume V .

Its derivation is given with much detail by Yaghjian*.

For a spherical volume it can be shown that:
1

,
3

L I=

*A. D. Yaghjian, Proc. of the IEEE, Vol. 68, No.2 248-63 (1980).



( ) ( ) ( ) ( ) ( )

( )
( )

( )

2
0 0 0

0

0

, , lim ', , ', ', '

,
                , ,

b E
V

V V

b

b

E r E r k r G r r E r dr

r
L E r

δ
δ

ω ω χ ω ω ω

χ ω
ω

ε ω

→
−

= + ⋅

−


        

  

And the general expression for the equation is:

NOTE 1: When the observation point r is located outside the scatterer, no 
singularity shows up since the integration is limited to the scatterer volume.

NOTE 2: the field at any point in the background is entirely determined from the 
field inside the scatterer.

This can be used to split the calculation: in a first step only the field inside the 
scatterer is computed and stored; 

Second step: the field at any desired location in the background is then computed.



searching for exact solutions requires a volume discretization procedure of 

the source region*

We define a grid with N meshes over the system.

Each mesh i is centered at position ri

and has a volume Vi .

Different size meshes can be combined

higher mesh refinement can be used where
a precise knowledge of the field is required 
or where the dielectric contrast with respect
to the background is large (i.e. χob>>1)

*O.J.F. Martin and N.B. Piller, Phys. Rev. E, Vol 58, 3 (1998)



Introducing:

the discretized field Ei=E(ri),
the discretized dielectric susceptibility χχχχb,i= χχχχob(ri) 

the discretized Green’s tensor 

we obtain a dense system of linear equations:

N
2

0, , 0 ,
1,

2 ,

0 ,           ;

i i ji j b j j

j j i

b i
i i ib i

b

E E G k E

M k E L E

χ τ

χ
χ

ε

= ≠

 = + ∆ 

+ −


  



 


( ) ( ) ( ) ( ) ( )
( )
( )

( )2 0
0 0 0

0

,
, , lim ', , ', ', ' , ,b

b E
V

bV V

r
E r E r k r G r r E r dr L E r

δ
δ

χ ω
ω ω χ ω ω ω ω

ε ω→
−

= + ⋅ −
          

( ) ,, ',E i jG r r Gω =
 



Where:

( )
0

lim , ' ';

i

i E i
V

V

M G r r dr
δ

δτ
→

∆ −

= 
  

The value of Mi can be evaluated analytically for 
a mesh with a simple shape ( i.e. cubic or 
spherical). For a spherical mesh we have: 

( )2

1

3

2
1 1 ,

3

3
;

4

eff
b iik Reff

i b i

b

eff

i i

M ik R e I
k

R τ
π

 = − − 

 
= ∆ 
 

*O.J.F. Martin and N.B. Piller, Phys. Rev. E, Vol 58, 3 (1998)



Numerical implementation of the algorithm 

N
2

0, , 0 ,
1,

2 ,

0 ,           ;

i i ji j b j j

j j i

b i
i i ib i

b

E E G k E

M k E L E

χ τ

χ
χ

ε

= ≠

 = + ∆ 

+ −


  



 


Starting with the discretized equation:

We define the array containing the input field E0 as:

( )0,1 0,2 0, 0,1 0,2 0, 0,1 0,2 0,... ... ... ;x x x y y y z z z

N N NB E E E E E E E E E=

B and X are an arrays composed by 3N elements 

The same procedure is performed for the total field:

( )1 2 1 2 1 2... ... ... ;x x x y y y z z z

N N NX E E E E E E E E E=



Numerical implementation of the algorithm 
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  
  
      

Discretized G tensor is numerically composed by a 3Nx3N matrix.
The zeroes take into account the fact that  the sum is performed over 
the indices i,j excluding the i=j terms  
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Numerical implementation of the algorithm 
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Numerical implementation of the algorithm 

N
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0 ,           ;
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Finally the equation can be written as:

( )X S A X B= + +

So, for a given array B describing the incident field in all the points of the scatterer, 
the total field can be evaluated by solving for the X variable the following system of 
equations:

( )I S A X B− − = K X B= 1X K B−= 



SUMMARY 

1] Consider a nanostructure defined by a dielectric constant ε(r) embedded in a 
homogenous medium εb.

2] Define a grid with N meshes over the system. Each mesh i is centered at position 
ri and has a volume Vi .

3] Select an incident field ( for example a plane wave) and calculate its value on the 
ri points ignoring the presence of the nanostructure. ( constructing the  B array)

4] Calculate the 3Nx3N K-matrix by evaluating the Green tensor elements and the M 
and L operators for all the ri points.

5] Calculate K-1 and evaluate the total field INSIDE THE SCATTERER by: 

1X K B−= 



εεεεb

STEP 2: Calculation of the field outside the scatterer

1B] Define the domain where you want to calculate the electric field. For example 
a plane at arbitrary distance from the object.

2B] Define a grid with M meshes over the selected domain.

N
2

, 0, ,, 0 ,
1,

tot i i P ji j b j j

j j i

E E G k Eχ τ
= ≠

 = + ∆ 
  



The discretized equation is:

Field collected in 
the observation 
plane: i=1,…M.

Incident field 
evaluated at 
the observation 
plane: i=1,…M.

Field inside the 
scatterer calculated  
in step 1. j=1,…N.

Link between the points 
of the objects and the 
points of the observation 
plane. Every components 
is a MxN matrix



STEP 2: Calculation of the field outside the scatterer

3B] Calculate the scattered field by evaluating:

N
2

, ,, 0 ,
1,

sc i P ji j b j j

j j i

E G k Eχ τ
= ≠

 = ∆ 
 

 ;extY S X=

3N array 
calculated in 
step 13Mx3N

4B] Calculate the total field by adding the incident field:

NOTE: Step 2 con be repeated  and the field outside the scatterer can be calculated 
everywhere in the space easier if the data from STEP 1 are saved. No matrix 
inversion is required for STEP 2, thus the process is faster.

, 0, ,tot i i sc iE E E= +
  



Calculation of CROSS SECTIONS

In the absence of an obstacle, the average power carried across Σ by the incident 
wave is zero:

It means that no energy is extracted from the 
incident wave.

( ) ( )* *
0, 0,

1 1
ˆ ˆRe Re 0;

2 2
tot totE H nd E H ndω ω

Σ Σ

× ⋅ Σ = × ⋅ Σ = 
   

The presence of the obstacle is responsible 
for  a scattered field and losses. If there is 
absorption the overall flux of the Poynting 
vector across Σ is negative i.e. the outgoing 
energy is less than the ingoing. The 
absorbed power is:

εεεεb

ΣΣΣΣ

0tot scE E E= +
  

( )*1
ˆRe

2
abs tot totP E H nd

Σ

= − × ⋅ Σ
 



Calculation of CROSS SECTIONS

The time-averaged power scattered by an obstacle is

( )*1
ˆRe

2
sc sc scP E H nd

Σ

= × ⋅ Σ
 

NOTE: it is always a positive number

The total power EXTRACTED from the incident wave is:

( )* *1
ˆRe

2
ext abs sc tot tot sc scP P P E H E H nd

Σ

= + = − × − × ⋅ Σ
   

0tot scE E E= +
  

( )* *
0 0

1
ˆRe

2
ext sc scP E H E H nd

Σ

= − × − × ⋅ Σ
   



Calculation of CROSS SECTIONS

If the object is irradiated by a plane wave, the absorbed, scattered and extracted 
powers are proportional to the power density of the incident wave:

( )*
0 0 0

1
Re ;

2
E H= ×
 



It is useful to define quantities that are related only to the object, size and material, 
called cross sections  [m2] :
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SECOND HARMONIC GENERATION

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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0 0

0
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ω ω ω ω
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
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     

For small objects the nonlinear effects on the fundamental field are negligible at 
reasonable intensities, thus we ignore the P(2) term at ω. This means that the 
fundamental field can be calculated by solving the linear equation as previously 
shown:



SECOND HARMONIC GENERATION

( ) ( ) ( ) ( ) ( )
( )
( )

( )2

0 0
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b E
V
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Then we can calculate the second harmonic field inside the object:
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This term can be calculated by 
substituting the E field at the FF 
previously calculated.
It acts as a known term:

The scattered field is similar to 
the expression for the 
fundamental field  

The discretized equation is:



SECOND HARMONIC GENERATION

N (2) (2)
2 2 2,
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The equation can be written in compact form:

( )I S A X B− − =

The solution is obtained by the inversion of  the K matrix :

K X B= 1X K B−= 



SECOND HARMONIC GENERATION IN METAL NANOPARTICLES

The nonlinear polarization density is due to magnetic dipole and electric quadrupole 
contributions:

δ,β,γ are frequency dependent parameters
characterizing the medium

SHG originates from both bulk and surface response.

The parameters can be estimated by modeling the optical response of the material. For example in 
the case of metals several models have been proposed:

Free electron gas model
F. Brown, R. E. Parks, and A. M. Sleeper, Phys. Rev. Lett. 14, 1029 1965.
N. Bloembergen, R. K. Chang, and C. H. Lee,  Phys. Rev. Lett. 16, 986–989 (1966);

Hydrodynamic Model
J. E. Sipe and G. I. Stegeman, in Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces, edited by V.M.Agranovich 

and D. L. Mills North-Holland, Amsterdam, 1982.

Nonlinear quantum mechanical surface response of conduction electrons is calculated with the jellium model.
A. Liebsch, Phys. Rev. Lett. 61, 10 1988
A. Liebsch, Electronic Excitations at Metal Surfaces Plenum, New York, 1997.



We begin by assuming that at optical frequencies the linear response of a metal is strongly  affected by 
the bound valence electrons. 

εεεεD is the electric permittivity obtained by considering the Drude model only.
ωωωωp is the plasma frequency
Gj and ωωωω0,j respectively are the oscillator strengths and resonant frequencies,
κκκκj are damping constants related to each oscillator.
ωωωω0 is the plasma frequency associated with intraband transitions

(related only to the free electron density) with oscillator strength G0 and      
damping constant κκκκ0.

Drude-Lorentz Model for the Optical  
Response of Metals

we model the optical response of the metal by assuming an effective current density:

where JD is the current density induced by the electromagnetic field on the free electrons and Pb.e. is the 
polarization vector due to the presence of bound electrons. Each term contains both linear and nonlinear 
contributions. At this stage we consider nonlinear effects related to the response of conduction electrons 
only.

. .b e
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J J
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∂
= +

∂
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A.D. Rakic , A. B. Djuris ic , J. M. Elazar and M. L. Majewski,  Appl.  Opt.,  Vol. 37, No. 22 (1998).
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( )ˆ 'X r


( )ˆ 'Y r


are vectors defining the coordinates of the boundaries

and are the local unit vectors tangential and normal (outgoing) to the surface

'r


Evaluation of Bulk and Surface contributions

Bulk nonlinear term driven by 
absorption losses. It is not 

present in the classical free 
electron gas theory 

We separate bulk  and surface contributions

A. Benedetti, M. Centini, C. Sibilia, M. Bertolotti, J. Opt. Soc. Am. B 27 3 408-416 (2010)
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The field is evaluated inside the object when the 
distance  to the boundary tends to zero



Numerical evaluation of generated
second harmonic field

The generated field pattern can be calculated by considering  the equation for the generated SH electric field:
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The formal solution is:
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Numerical evaluation of generated
second harmonic field

the nonlinear surface term reduces to a  surface (2D) integral along the boundary of V 

(named Σ) when the expression of the surface current density is considered:

( ) ( ) ( ) ( ) ( )2, ' ' ' , ;Surface
E NL E

V

G r r J r d G r d E rτ Σ

Σ

= Σ Σ Σ = 
      



Boundary points are not considered 
as scattered points. The calculation 
of the integral can be performed 
without introducing other terms and 
its value is considered as an 
impressed field.



SECOND HARMONIC GENERATION
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The equation can be written in compact form:

( )I S A X B− − =

The solution is obtained by the inversion of  the K matrix :

K X B= 1X K B−= 



Stratified backgrounds 

The procedure is the same as described before  
but  the Green tensor for a stratified background 
must be used:

While there is an analytical expression for the 
Green tensor in a homogenous medium, it is not 
posible to evaluate the Green tensor for a stratified 
medium analytically.

Nevertheless it is possible to evaluate it numerically:

M. Paulus, P. Gay-Balmaz,1 and O. J. F. Martin, “Accurate and efficient computation of the Green’s 
tensor for stratified media” Phys. Rev. E, 62, 4, (2000)

Tatsuo Itoh Ed.  “ Numerical Techniques for microwave and millimiter wave passive structures” Wiley 
ad Sons (1989)



ADVANTAGES

Simple implementation,
it does not require discretization of the entire space,
only the objects need to be discretized, it can easily handle systems 
composed by nanoparticles ontop of layered structures.
The field can be evaluated everywhere in the space once it is known the field 
inside the object.
Useful for investigating near field as well as far field properties.

DRAWBACKS

High dielectric permittivity scatteres require a fine mesh. 

All the data are stored in matrices requiring  a big amount of available RAM.

Matrix inversion might be heavy to compute.

CONCLUSIONS 
(numerical model)



EXAMPLES



Nonlinear frequency conversion at the nanoscale: Main features

If the field is confined  and localized in subwavelength regions phase mismatch 
does not play a crucial role.

On the other hand, overlap between fundamental frequency field and second 
harmonic field is important. Optimal conditions are achieved if both field are 
localized in order to maximize the overlap.

Sub wavelength field localization can be achieved by excitation of surface plasmon
polariton and localized surface plasmon polariton at metal dielectric interface.

Strong field confinement across the surface.
Evanescent waves in the metal and in the dielectric [Fisher and Martin, Opt. Express 16, 9144-9154 (2008)]. 



FF LRSP SH LRSP

FF LRSP

SH LRSP
FF SRSP

FF SRSP



Enhancement of the Second 
order response of metal

Enhancement of the Second 
order response of quartz

Renewed interest due to development of 
metamaterials ad nanotechnologies



length of each element of the nanoantenna is 100 nm,
gap between elements is 30 nm. 
Variable cross section thickness 
from (10 x 10) nm2 to (36 x 36) nm2.

Numerical analysis: Linear properties
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Numerical analysis: Linear properties

Different behavior between TE (y) and TM (z) polarization

10 15 20 25 30 35
10

-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

Thickness (nm)

A
C

S
(r

e
d

);
 S

C
S

(b
lu

e
);

 (
cm

2
)

(ACS- red curve)
(SCS-blue curve)
TE pol (solid)
TM pol(dashed)



Numerical analysis: Nonlinear properties
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TM  pump

For TM pump, there are negligible effects due to field localization because the antenna is out 
of resonance. The SH signal is mostly generated by bulk contributions.

Y. Zeng and J. V. Moloney, “Volume electric dipole origin of second-harmonic generation from metallic membrane with noncentrosymmetric 

patterns,” Opt. Lett. 34, 2844-2846 (2009).



Numerical analysis: Nonlinear properties

TE  pump

the linear response of the system is 
stronger with respect to the TM case.
High localization of the pump field at 
metal/air interfaces, higher absorption 
means higher field penetration inside 
the metal.

Surface contributions are stronger, as 
expected for a film.

Pump field becomes more localized 
close to the air gap between the two 
rods and at the antenna’s tips, 
reducing the amount of surface 
effectively contributing to the process 
and enhancing the bulk nonlinear 
response
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Numerical analysis: Far field pattern
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Second harmonic differential scattering cross section [cm2/W] for TM pump 

Only bulk nonlinear contributions

(13x13) nm2 antenna

Surface terms can be neglected. Measured signal 
can be considered  only coming form bulk contributions



Numerical analysis: Far field pattern

Second harmonic differential scattering cross section [cm2/W] for TE pump 

 

(a) (b) 

(13x13) nm2 antenna

Only bulk nonlinear contributions

Benedetti A; Centini M; Bertolotti M; Sibilia C, Second harmonic generation from 3D nanoantennas: 
on the surface and bulk contributions by far-field pattern analysis OPTICS EXPRESS (2011) 19, 26752



Numerical analysis(FF)

Rectangular section wires: h=300 nm
d=145 nm

Trapezoidal section wires: B=420 nm
d=145 nm
h=300 nm 

Average energy per unit length in the gap 
region of Area=gd as a function of the gap

Pump at 800 nm, p-pol and normal incidence
( k is parallel to x-axis and E is parallel to y-axis)
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We evaluate the nonlinear scattering cross section Q(ω) :
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q(θ|2ω) is the differential scattering cross section;
P(ω)inc is the power flow per unit length (W/m) of the FF field across the 
segment σ
P(2ω)sc is the generated SH power flow per unit length calculated 
across a circumference of radius R>>λ. 

Numerical analysis (SH)

Modulus of the Poynting vector (W/m2) 

[x10-20]



Numerical analysis (SH)

Far field differential scattering 
cross sections for RS and TS 
wires for different values of 
the gap between wires

Real part of the magnetic field 
Hz (A/m) at the second harmonic 
frequency for g=18 nm

A. Benedetti, M.Centini, C.Sibilia, M. Bertolotti
J. Opt. Soc. Am. B Vol. 27, No. 3, 2010
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d=212 nm
h=38 nm
g=28 nm

Silver Coupled Resonators 

Efficiency factor for absorption at the FF field:
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Two-rod nanoresonator

Single rod

Silver Coupled Resonators 

Enhanced second harmonic non linear scattering 
cross section due to resonant excitation of a 
localized surface plasmon polariton in the 
nanoresonator.

Centini M.; Benedetti A.; Sibilia C.; Bertolotti M. Coupled 2D Ag nano-resonator chains for enhanced 
and spatially tailored second harmonic generation OPTICS EXPRESS (2011). 19, 8218- 8232



Silver Coupled Resonators 
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d=212 nm
h=38 nm
g=28 nm
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Silver Coupled Resonators 
SH

SH far field pattern contains information 
of the FF sub-wavelength localization 
properties: Different FF nearfield profiles 
produce different SH emission patterns.



Silver Coupled Resonators 
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FF @ 920 nm

FF @ 960 nm
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Silver Coupled Resonators 
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FF @ 980 nm

FF @ 1030 nm



If nanoantenna's nonlinear response is affected by the excitation of LSPP a 
variety of cases can be obtained: great attention must be paid when 
neglecting the nonlinear surface sources in numerical models of SHG, 
because, every case must be considered by itself, without performing a priori 
simplification.

Different spatial patterns of emission can be achieved by considering 
surface and/or bulk contributions. Performing experiments with different 
polarization of the pump field, the two regimes could be addressed in order to 
investigate dominant surface contributions and dominant bulk contributions 
separately. 

Second harmonic emission pattern of nanostructured arrays of metallic 
particles can be tailored by changing shapes and distance of the elements.

Considering coupled nanoresonators, near field and far field properties of the 
generated second harmonic are strictily related to localization properties of the 
pump field. The main angle of emission  changes as a function of the 
pump frequency.

CONCLUSIONS
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