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OUTLINE

1) Theoretical approach — description of the integration method,;
2) Second harmonic generation in nhoncentrosymmetric nanocrystals;

3) Second harmonic generation in metal nanoparticles: Surface and bulk
contributions;

4) EXAMPLES:
- Second Harmonic Generation in Gold Nanoantennas, Bulk
and surface contributions by far field pattern analysis;
- Second harmonic generation by Excitation of Coupled Two
Dimensional Silver Nanoresonators.

5) CONCLUSIONS



We consider a material system of arbitrary shape embedded in a homogeneous, non
magnetic, dielectric medium with relative permittivity €.

Properties of the object are described by an €p
effective current density J and charge density p.

Th w—Fourier transforms of the four Maxwell
equations are:

g€, (0)V-E(F,0)=p(F, @), (1)

C. Girard, Rep. Prog. Phys. 68 (2005) 1883—1933



For the electric field, we can proceed as follows: from eq. (3) we have

VXVXE(F,0)=iouV xH (F,0),

And substituting eq. (4) we obtain:

—

VXVXE(7,0)=iau, [—iwgogb (@)E (F,@)+J (?a))] (5)

We then apply the identity:

VXVXE(F,0)=V(V-E(F,0))- V’E(F,0),

And eq. (5) becomes:

—

V(V-E(F,0))-VE(F,0) = iwyo[—ia)gogb (@) E (7, 0)+J (




Finally we introduce the following relationship between charge,
current and polarization densities:

p(7,0)=-V-P(F,w),
J (F,w) =—iwP(7,w),
And equation (6) becomes:
_ o’ _ , = _ 613(?,(0)
V’E(F,0)+—¢,(®)E(F,0)=-a’ 1P (F,0) -V
c g€, (@




If we define the following operators:




Operator O can be moved inside the integral if the integrand is not singular:

E (F.0)=——[0"0-P(F @) (F~F')dF' = giﬁ( o)- P (7', @)dF"

Where we defined the field-suscepitibility tensor:

S, (F.F,0)=-0"'05(7 -7'),

NOTE: Impossibility of interchanging the operators the integral equation when
the integrand becomes singular, i.e. when r — r’ requires further analysis and
it is responsible of an additional source term (it will be discussed later).




The general solution is obtained by adding the solution of the homogeneous
equation i.e. the field in the absence of the nanostructure.

Scattered field

If the nanostructure can be described by a macroscopic dielectric susceptibility we
can write:

—

P(7,w)=¢&,y,, (F.0)E(F', o),

Where 7, is the difference between the dielectric constant of the nanostructure and
that of the surroundings:

-

ZOb(F"w):gr(r ’w)_gb



The formal solution is:

—

E (F,0)=E, (F,0)+ [ 5, (7.7, @) 1, (F.0) E(F", @)dF", (9)

The next step is to give an explicit expression for the S, operator:

)

o (7

Fm)=-

07'Q5(rF—7"),

For the operator O
it is known that:

0G,,(

FELw)=| Vi 4k |G, (7.7, o)

with k; =k &, (o)

Where G, is the scalar green function for the Helmholtz equation:

G,, (F,7', o)

ik |77 |

Ar|F -7

9




Thus: =

And finally:

—~ —~ o~ —~

S, (7,7, @) =-407'0p (F —7") =400 |6 (F - 7') = 0G,, (F.7 ', w),

~

Commutation between the operators is not possible if r->r’. This operation is
responsible for the appearance of an extra term and will be discussed later.

S, can be evaluated by calculating the following expression:

_ 2l 1 ~o eikb|?—?'|
50(7,?',(())2—0 [ +—=VV |——;
4 k, ‘r—r'




We define the Green dyadic for the electric field:

_ 1| = 1 - eikb|?—7'|
GE(?”_;"G)):_ I+—2VV — — =
4 k, |r—r'|
. 1 Y _p2p2 ) iR
_ T+lkbf€211+3 3zkb2R4kbR RR €.
k, R k, R 47R

We have:

In cartesian coordinates:

( 3\
G, G, G_.
ny G)’y G)’Z

\ sz Gzy Gzz

NOTE: The Green dyadic contains both far field ( proportional to 1/R) and near field

(proportional to 1/R? and 1/R3)




The equation for the electric field becomes:

E (F,0)=E,(F,0 +jk 2o, (FL0)G, (F.7',0)-E(F',0)dF ",

V is the volume of the nanostructure.

As mentioned before this expression is not valid for r=r'. A small volume V;
containing r must be excluded. The commutation of operators O and Q generates an
additional source dyadic term L depending on the shape of the exclusion volume V.

lts derivation is given with much detail by Yaghjian*.

For a spherical volume it can be shown that: f =—1,

*A. D. Yaghijian, Proc. of the IEEE, Vol. 68, No.2 248-63 (1980).



And the general expression for the equation is:

E (F,0)=E,(F.0)+1im [ k%, (F.0)G, (7.7 o) E(F,0)dr
Iy,

_:Z()b(’_;’a)) E (7.
e (o)

NOTE 1: When the observation point r is located outside the scatterer, no
singularity shows up since the integration is limited to the scatterer volume.

NOTE 2: the field at any point in the background is entirely determined from the
field inside the scatterer.

This can be used to split the calculation: in a first step only the field inside the
scatterer is computed and stored;

Second step: the field at any desired location in the background is then computed.



searching for exact solutions requires a volume discretization procedure of

. *
the source region

We define a grid with N meshes over the system.

N
/
Each mesh iis centered at position r; // N
and has a volume V.. 7 1
\
\\
Different size meshes can be combined \ /
\\ //

higher mesh refinement can be used where
a precise knowledge of the field is required
or where the dielectric contrast with respect
to the background is large (i.e. y,>>1)

*O.J.F. Martin and N.B. Piller, Phys. Rev. E, Vol 58, 3 (1998)



Introducing:

the discretized field E=E(r),
the discretized dielectric susceptibility Xb,i= Xob(F?)

the discretized Green’s tensor G, (7, r, w) =G,




Where:

M. =lim | G, (¥ 7)dF" L

Vs—0
> AT -V /

The value of M, can be evaluated analytically for
a mesh with a simple shape ( i.e. cubic or
spherical). For a spherical mesh we have:

2 : O

M= 3—[(1 — ik, R ) 11,

2
b

1
Rieﬁ — (iATij3 :
4

*
O.J.F. Martin and N.B. Piller, Phys. Rev. E, Vol 58, 3 (1998)



Numerical implementation of the algorithm

Starting with the discretized equation:

— — N — —
Ei=FEo+ Z ‘Gi,j‘[kglb,jEj}ATj

j=1,j#i

+7i°k§;{bi§i _f@_éi;
: g,

We define the array containing the input field E, as:

D _ X X x y y y z Z z .
B — (EO,I E0,2 ee e EO,N EO,I E0’2 eee EO,N EO,I EO,2 Ly EO,N ) °

The same procedure is performed for the total field:

X=(E Ej .. E, E E . E, E E . E);

1

B and X are an arrays composed by 3N elements




Numerical implementation of the algorithm

B XX Xy Xy Xz Xz
G],N O Gl,z G],N () Gl,z G],N
XX XX Xy Xy Xz pod
G2,1 G2,N G2,1 O G2,N G2,1 O G2,N
XX XZ XZ
GN 1 O GN 1 GN 2 0 .
yx yy yz yz
U GI,Z s GI,N U GI,Z GI,N
Gy~ 0 Gyy Gyy | | G~ 0 Gyy
yx yx yy yy yz
GN,I GN,Z () GN,I GN,2 GN,Z
x X 2y
O G1,2 GI,N () G1,2
X x zy
G2,1 O GZ,N G2,1 O
X X 2y 2y
L GN,l GN,2 O GN,l GN,2

Discretized G tensor is numerically composed by a 3Nx3N matrix.
The zeroes take into account the fact that the sum is performed over
the indices i,j excluding the i=j terms



Numerical implementation of the algorithm

0 1A TZGE'; XA rNGl'f*N 0 1A TZGIX_; INA TNGI";};,
2ATG) 0 WATGY | | KATG) 0 IvAT G
ZIATIG})\?;I ZZATZG})\(I)TZ O ZIATIG])\C/}:I ZZATZG])\(KZ 0

O ZZ A T2 Gl‘; ZN A TN Gl/tlr\/ O Z2A TZGI}E ;{N A TN Gly;v

2 1ATGs 0 AT G XAT G 0 INATG
0
ZIATIG]%TI ZZAT2G§T2 O ZIATIG;%I ZZATZG]?,E O

0 ATG InATVGly 0 ATG INATGly
XAT G 0 IWATG || MATGS) 0 INATVGS
ZIAT]G;;X,I Z2ATZG;{2 0 IIATIGlfly,l ZZATZG;/)‘,Z 0

- X

Il
Sell

N = —
Z Gi,j'[kgzb’jEj]ATj
j=1,j#i

Being:

ol
I

(EF E; .. E, E' E; .. E

XAT G
zlA;l'G;Z
1ATGS
zlA;;Gifl
XATGH

HATGY,

E;

LATG

LATGY,
Z 2 A TZ Gl‘,);

LATGY,
X1AT, sz

XZAT2GI$,2

AT G
IATGy

XNATNGI},?V
InATVG

InATVGy
ZNA TN GZZ,ZN




Numerical implementation of the algorithm

Aixx = M,-”'k(f}(i - L &

gb
M ikl y,,Ei _LAuE JAY =My -1 4
Sb gb
Aizz — Mizz.kgzi —LZZ&
8b
0 0 0 0 0 0 0) | X,
0 0 0 0 0 0 0 X,
AR 0 0 0 0 0 0 X,
0 A” 0 0 0 0 0
0 0 ) 0 0O O 0 = _
% =A-X
0 0 0 AY 00 .. 0 X,
0 0 0 0 AT 0 0
0 0 0 0 0 AF 0
0 0 0 0 0 0 AZ |\ Xay




Numerical implementation of the algorithm
Finally the equation can be written as:
— — N — ) —
Ei=FEo + Z Gi,j'[kozb,jEj]ATj
j=1, j#i

—_

+ﬁi°k§ZbiEi _i@Ei;
: £,

X=(§+Z)-}?+E

So, for a given array B describing the incident field in all the points of the scatterer,
the total field can be evaluated by solving for the X variable the following system of
equations:

-

sell

2
%
I
ool

K-X=B| =—®» |X=K'.B



SUMMARY

1] Consider a nanostructure defined by a dielectric constant £(r) embedded in a
homogenous medium g,.

2] Define a grid with N meshes over the system. Each mesh i is centered at position
r,and has a volume V,.

3] Select an incident field ( for example a plane wave) and calculate its value on the
I, points ignoring the presence of the nanostructure. ( constructing the B array)

4] Calculate the 3Nx3N K-matrix by evaluating the Green tensor elements and the M
and L operators for all the r, points.

5] Calculate K-' and evaluate the total field INSIDE THE SCATTERER by:



STEP 2: Calculation of the field outside the scatterer

1B] Define the domain where you want to calculate the electric field. For example
a plane at arbitrary distance from the object.

2B] Define a grid with M meshes over the selected domain.

€p

The discretized equation is:

. N —
Eiori + z Gi,j"|:k§){b’ :|AT].
j=1,j#

Field inside the

. . scatterer calculated
incident _ —field in'step 1. j=1,...N.

evaluated  at
the observation
plane: i=1,...M. Link between the points
of the objects and the
points of the observation
plane. Every components
is @ MxN matrix

NS

———l

/
RN

Field collected in
the observation
plane: i=1,...M.




STEP 2: Calculation of the field outside the scatterer

3B] Calculate the scattered field by evaluating:

N — :‘_

Ewi= Y Gk, Eriac| = ¥=5 [,

J

j=1,j#i
\ 3N array
calculated in

3Mx3N | step 1

4B] Calculate the total field by adding the incident field:
Etot,i — EO,i + Esc,i

NOTE: Step 2 con be repeated and the field outside the scatterer can be calculated
everywhere in the space easier if the data from STEP 1 are saved. No matrix
inversion is required for STEP 2, thus the process is faster.



Calculation of CROSS SECTIONS

In the absence of an obstacle, the average power carried across X by the incident

wave is zero:

1 1

X X

It means that no energy is extracted from the
incident wave.

The presence of the obstacle is responsible
for a scattered field and losses. If there is
absorption the overall flux of the Poynting
vector across X is negative i.e. the outgoing
energy is less than the ingoing. The
absorbed power is:

—

P =—1Re_[(Et0txH;t)-ﬁdZ

abs
2 x>

ERej(Emt xH, ) AdL = EReJ(EO,wxﬁg,w)-ﬁdZ = 0;

Etot — EO +Esc

€p




Calculation of CROSS SECTIONS

The time-averaged power scattered by an obstacle is

P :—ReI(ESC xH. ) -hdZ

by

NOTE: it is always a positive number

The total power EXTRACTED from the incident wave is:




Calculation of CROSS SECTIONS

If the object is irradiated by a plane wave, the absorbed, scattered and extracted
powers are proportional to the power density of the incident wave:

®, :lRe(onH;);

2

It is useful to define quantities that are related only to the object, size and material,

called cross sections [m?] :

ReI(Esc xH ) idX

SC§="3=_ X
®, Re(E,x H,)
, FRe [(E, xH,,) idx
ACS=—%=——* .
®, Re(E,x H,)
ReI(EOxI:I:C+ESC><H§) AdY
ECS: ext — __ X -

SCATTERING CROSS SECTION

EXTINCTION CROSS SECTION



SECOND HARMONIC GENERATION

&
. 1 r= . .
E (F.20)=—|S,(7,7',2m)-| P(7',20)+ P? (F',20) dr',
(F,20) gof o(F.7'20)-| P(7.20)+ PP (7',20) W7 SH
Where: and
P(F.w)=¢y, (7, 0)E(F, o), PP (7 w) =277 (¥, w): E(F'.20)E (¥, 0),

For small objects the nonlinear effects on the fundamental field are negligible at
reasonable intensities, thus we ignore the P term at . This means that the
fundamental field can be calculated by solving the linear equation as previously
shown:



SECOND HARMONIC GENERATION

—

E (7o) =F,(F.0)+lim [ Bz (7.0)G. (7.7.0) B 0)d - L2 " E(7 o)

0, £, ()

_Vb‘

The scattered field is similar to \ This term can be calculated by
the expression for the substituting the E field at the FF
fundamental field previously calculated.

It acts as a known term:

The discretized equation is:



SECOND HARMONIC GENERATION

KX=B| =» |X=K'B




SECOND HARMONIC GENERATION IN METAL NANOPARTICLES

The nonlinear polarization density is due to magnetic dipole and electric quadrupole
contributions:

PNL(I‘|2w) = alE(r|w) - V]E(r|w) + BE(r|w)
X [V - E(r|w)] + yV[E(]o) - E(r|o)]

where « = 6§ — B — 2y d,B,Y are frequency dependent parameters
characterizing the medium

SHG originates from both bulk and surface response.

The parameters can be estimated by modeling the optical response of the material. For example in
the case of metals several models have been proposed:

Free electron gas model
F. Brown, R. E. Parks, and A. M. Sleeper, Phys. Rev. Lett. 14, 1029 1965.
N. Bloembergen, R. K. Chang, and C. H. Lee, Phys. Rev. Lett. 16, 986—-989 (1966);

Hydrodynamic Model
J. E. Sipe and G. I. Stegeman, in Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces, edited by V.M.Agranovich
and D. L. Mills North-Holland, Amsterdam, 1982.

Nonlinear quantum mechanical surface response of conduction electrons is calculated with the jellium model.
A. Liebsch, Phys. Rev. Lett. 61, 10 1988
A. Liebsch, Electronic Excitations at Metal Surfaces Plenum, New York, 1997.



Drude-Lorentz Model for the Optical
Response of Metals

We begin by assuming that at optical frequencies the linear response of a metal is strongly affected by
the bound valence electrons.

S G a)2 €, is the electric permittivity obtained by considering the Drude model only.
E, ((0) =&, ((0) + Z /_P : ), is the plasma frequency
= 0)51. - (()2 - la)K'j G, and a,; respectively are the oscillator strengths and resonant frequencies,
) K; are damping constants related to each oscillator.
a)g o, is the plasma frequency associated with intraband transitions
&, (C()) =1- — (related only to the free electron density) with oscillator strength G, and
(02 — LK, damping constant k.

A.D. Rakic’, A. B. Djuris ™ ic” , J. M. Elazar and M. L. Majewski, Appl. Opt., Vol. 37, No. 22 (1998).

we model the optical response of the metal by assuming an effective current density:

~ - 0P
J :JD + b.e.
ot

where J, is the current density induced by the electromagnetic field on the free electrons and P, is the
polarization vector due to the presence of bound electrons. Each term contains both linear and nonlinear

contributions. At this stage we consider nonlinear effects related to the response of conduction electrons
only.



Evaluation of Bulk and Surface contributions

We separate bulk and surface contributions

Bulk nonlinear term driven by

/ absorption losses. It is not
present in the classical free

Jﬁzlk —1260[ 75'(5{-6)51 | 7d§|:E‘EH§ electron gas theory
d = ofs;
=20f(a—1);
Xl =—=i2w(4yb) EESS(Y): b=-a’p;
A —ourjace egow(? (8 +3)
Veiw " =-i20(2ya)[EST 5(Y): Y = mot ||
Zodm " =—i2w(4yb) EJEQS(Y); o, 20
—— w+ik,’ 20+iK,

The field is evaluated inside the object when the
distance to the boundary tends to zero

A

X (7’) and Y (7‘) are the local unit vectors tangential and normal (outgoing) to the surface

A. Benedetti, M. Centini, C. Sibilia, M. Bertolotti, J. Opt. Soc. Am. B 27 3 408-416 (2010)



Numerical evaluation of generated
second harmonic field

The generated field pattern can be calculated by considering the equation for the generated SH electric field:

{6/\6/\ - (202)) 7JE2 (7) - i(zw)ﬂojz (7);

C

being:

J, (F)=—i2e€,7,, (F) E, (F) + T " (F) + T " (F):

The formal solution is:

—

E,(7)=lim kg;(b,z(F')(:}E(F,F',Zw)- 2(7’)d7'—f b’z(r)E2(7)+

Vs—0
Ty oy €po

+i2au, lim | G, (¥,7',20)- J 2% (7')dr' -
V-Vs

+idap, [ G, (7.7 20)- T (7') '
\%




Numerical evaluation of generated
second harmonic field

the nonlinear surface term reduces to a surface (2D) integral along the boundary of V
(named X)) when the expression of the surface current density is considered:

(@) (Pae =[G () Pz

Vv z

Boundary points are not considered
as scattered points. The calculation
of the integral can be performed
without introducing other terms and
its value 1s considered as an
impressed field.

y (m)




SECOND HARMONIC GENERATION

N =@ _
=z2wﬂ{ Y. Gy

j=1,j#i

KX=B| =» |X=K'B




Stratified backgrounds

PHYSICAL REVIEW E, VOLUME 63, 066615
Green’s tensor technique for scattering in two-dimensional stratified media

Michael Paulus’* and Olivier J. F. Martin™*
! Electromagnetic Fields and Microwave Electronics Laboratory, Swiss Federal Institute of Technology, ETH-Zentrum ETZ,
CH-8092 Zurich, Switzerland
2IBM Research, Zurich Research Laboratory, CH-8803 Riischlikon, Switzerland
(Recerved 1 February 2001; published 29 May 2001)
EpO
The procedure is the same as described before g0

but the Green tensor for a stratified background
must be used:

While there is an analytical expression for the
Green tensor in a homogenous medium, it is not
posible to evaluate the Green tensor for a stratified

Z
medium analytically. ‘ i’”
____________________________________________________________________________ d£+‘[
Nevertheless it is possible to evaluate it numerically: .

M. Paulus, P. Gay-Balmaz,1 and O. J. F. Martin, “Accurate and efficient computation of the Green’s
tensor for stratified media” Phys. Rev. E, 62, 4, (2000)

Tatsuo Itoh Ed. “ Numerical Techniques for microwave and millimiter wave passive structures” Wiley
ad Sons (1989)



CONCLUSIONS

(numerical model)
ADVANTAGES
Simple implementation,
it does not require discretization of the entire space,
only the objects need to be discretized, it can easily handle systems
composed by nanoparticles ontop of layered structures.
The field can be evaluated everywhere in the space once it is known the field

inside the object.
Useful for investigating near field as well as far field properties.

DRAWBACKS
High dielectric permittivity scatteres require a fine mesh.
All the data are stored in matrices requiring a big amount of available RAM.

Matrix inversion might be heavy to compute.



EXAMPLES




Nonlinear frequency conversion at the nanoscale: Main features

If the field is confined and localized in subwavelength regions phase mismatch
does not play a crucial role.

On the other hand, overlap between fundamental frequency field and second
harmonic field is important. Optimal conditions are achieved if both field are
localized in order to maximize the overlap.

Sub wavelength field localization can be achieved by excitation of surface plasmon
polariton and localized surface plasmon polariton at metal dielectric interface.

Surface plasmon

z
E Strong local field
Dielectric /\ /\/\/\

Metal it Rulpiatag 51 W it

®g
Note: This is a TM wave

Strong field confinement across the surface.
Evanescent waves in the metal and in the dielectric [Fisher and Martin, Opt. Express 16, 9144-9154 (2008)].



PHYSICAL REVIEW B VOLUME 30, NUMBER 10

15 NOVEMBER 1984

Optical second-harmonic generation with surface plasmons in noncentrosymmetric crystals

J. G. Rako, J. C. Quail, and H. J. Simon
Department of Physics and Astronomy, The University of Toledo, Toledo, Ohio 43606

(Received 23 January 1984)

J. Appl. Phys,, Vol. 58, No. 9, 1 November 1884

Second-harmonic generation with phase-maiched long-range

and short-range surface plasmons

J. C. Quail and H. J. Simon 0 Y
Department of Physics and Astronomy, The University of Toledo, 1 ‘\
Y
(Received 26 April 1984; accepted for publication 18 June | - \\
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PHYSICAL REVIEW B VOLUME 28, NUMBER 4 15 AUGUST 1983

Electromagnetic theory of diffraction in nonlinear optics and surface-enhanced
nonlinear optical effects

R. Reinisch
Laborataire de Génie Physigue, Equipe (No. 836) de Recherche associée au Centre National
de La Recherche Scientifigue, Ecole Nationale Supéricure d'Ingénicurs Electriciens
de Grenoble, Bite Postale 46, F-38402 Saint-Martin-d'Héres, France

M. Neviere
Laboratoire d'Optigue Electromagnétique, Equipe (No. 597) de Recherche associée au Centre National
de la Recherche Scientifique, Facuite des Sciences et Technigues,
Centre de Saint Jerome, F-13 397 Marseille Cedex 13, France
(Received 2 June 1982; revised manuscript received 15 November 1982)

PHYSICAL REVIEW B VOLUME 30, NUMBER 6 15 SEPTEMBER 1984

Second-harmonic generation in reflection from a metallic grating
G. A. Farias* and A. A. Maradudin

Department of Physics, University of California, Irvine, California 92717
(Received 26 January 1984)

VOLUME 38, NUMBER 11 15 OCTOBER 1988-1

PHYSICAL REVIEW B
Second-harmonic generation with surface plasmons from a silvered quartz grating

H. I. Simon, C. Huang, J. C. Quail, and Z. Chen*
Department of Physics and Astronomy, The University of Toledo, Toledo, Ohio 43606
(Received 1| April 1988)

Renewed interest due to development

metamaterials ad nanotechnologies

Enhancement of the Second
order response of metal

Enhancement of the Second
order response of quartz
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of FIG. 5. Monlinear reflectance on a logarithmic scale for the

difftacted SHG modes vs the angle of incidence. Circles,
squares, and triangles are experimental points and solid, dotted,
and dashed lines are the theoretical curves for the m =1, 0, and
— 1 modes, respectively.



Numerical analysis: Linear properties

(@ #z

length of each element of the nanoantenna is 100 nm,
gap between elements is 30 nm.

Variable cross section thickness

from (10 x 10) nm? to (36 x 36) nm?2.
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Numerical analysis: Linear properties

Different behavior between TE (y) and TM (z) polarization

(ACS- red curve)
(SCS-blue curve)
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Numerical analysis: Nonlinear properties
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For TM pump, there are negligible effects due to field localization because the antenna is out
of resonance. The SH signal is mostly generated by bulk contributions.

Y. Zeng and J. V. Moloney, “Volume electric dipole origin of second-harmonic generation from metallic membrane with noncentrosymmetric

patterns,” Opt. Lett. 34, 2844-2846 (2009).



Numerical analysis: Nonlinear properties

NLSCS [cm?/W]
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the linear response of the system is
stronger with respect to the TM case.
High localization of the pump field at
metal/air interfaces, higher absorption
means higher field penetration inside
the metal.

1 Surface contributions are stronger, as

expected for a film.

Pump field becomes more localized

N\ close to the air gap between the two

rods and at the antenna’s tips,
reducing the amount of surface
effectively contributing to the process
and enhancing the bulk nonlinear
response
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Numerical analysis: Far field pattern

Second harmonic differential scattering cross secti 2/W] for TM pump

(13x13) nm? antenna %

Surface terms can be neglected. Measured signal Only bulk nonlinear contributions

can be considered only coming form bulk contributions



Numerical analysis: Far field pattern

Second harmonic differential scattering cross section [cm2/W] for TE pump

(13x13) nm? antenna

“r'Yy

\ 4 (a)

Only bulknonlinear contributions

Benedetti A; Centini M; Bertolotti M; Sibilia C, Second harmonic generation from 3D nanoantennas:
on the surface and bulk contributions by far-field pattern analysis OPTICS EXPRESS (2011) 19, 26752



Numerical analysis(FF) 1 O
Pump at 800 nm, p-pol and normal incidence / "5
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Numerical analysis (SH)

We evaluate the nonlinear scattering cross section Q(w) :

P(2w 24
0(2w) :0'(—)”2: jq(mzw)de; >
I:P ( a))inc 0 III".
\
q(0)2m) is the differential scattering cross section;
P(w),,. is the power flow per unit length (W/m) of the FF field across the \
segment ¢ -

P(2w),, is the generated SH power flow per unit length calculated
across a circumference of radius R>>A.
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Numerical analysis (SH)
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absorption coefficient

Silver Coupled Resonators

Efficiency factor for absorption at the FF field:
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Silver Coupled Resonators

Enhanced second harmonic non linear scattering 150/
cross section due to resonant excitation of a

localized surface plasmon polariton in the |
nanoresonator.
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Centini M.; Benedetti A.; Sibilia C.; Bertolotti M. Coupled 2D Ag nano-resonator chains for enhanced
and spatially tailored second harmonic generation OPTICS EXPRESS (2011). 19, 8218- 8232
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Silver Coupled Resonators
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SH far field pattern contains information
of the FF sub-wavelength localization
properties: Different FF nearfield profiles
produce different SH emission patterns.
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CONCLUSIONS

If nanoantenna's nonlinear response is affected by the excitation of LSPP a
variety of cases can be obtained: great attention must be paid when
neglecting the nonlinear surface sources in humerical models of SHG,
because, every case must be considered by itself, without performing a priori
simplification.

Different spatial patterns of emission can be achieved by considering
surface and/or bulk contributions. Performing experiments with different
polarization of the pump field, the two regimes could be addressed in order to
investigate dominant surface contributions and dominant bulk contributions
separately.

Second harmonic emission pattern of nanostructured arrays of metallic
particles can be tailored by changing shapes and distance of the elements.

Considering coupled nanoresonators, near field and far field properties of the
generated second harmonic are strictily related to localization properties of the
pump field. The main angle of emission changes as a function of the
pump frequency.
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