

2328-15

Preparatory School to the Winter College on Optics and the Winter College on Optics: Advances in Nano-Optics and Plasmonics

30 January - 17 February, 2012

Applications to gas sensing

F. Michelotti University Roma La Sapienza Roma Italy

BLOCH SURFACE WAVES ON PHOTONIC CRYSTALS

APPLICATIONS TO GAS SENSING AND BIOPHOTONICS

SAPIENZA Università di Roma

Department of Basic and Applied Sciences for Engineering Molecular Photonics Laboratory

Francesco Michelotti

International Centre for Theoretical Physics, Trieste, February 2010

Lecture 3 Applications of BSW to gas sensing (Experiments)

Issues on gas sensing with BSW

- The refractive index change due to exposition to a gas is not sufficiently large to be detected by a BSW (and by a SPP)
- Some amplification mechanism is needed

Chemical \rightarrow The gas modifies the 1DPC materials, giving rise to refractive index changes and detection

Physical → The 1DPC modifies the gas phase (for example from vapour to liquid)

Porous silicon as a good material for gas sensing with BSW

Porous silicon obtained by electro-chemical etching is a good candidate for BSW gas sensing.

- Stacks composed by layers with different porosity and refractive index can be etched in the same silicon wafer
- Very good definition of the layers thickness and refractive index
- Extremely large effective area (up to 800m²/cm³)
- Reactivity of the surface
- Porous structure modifies the vapour tension and forces condensation from gas to liquid phase

Porous silicon as a good material for gas sensing with BSW

- Electrochemical etching in HF:H₂0: C₂H₅OH starting from highly B-doped p+ type Si(100) with 7mΩ·cm
- The etching current density determines the porosity and the refractive index of the layers
- Etching of multilayers can be accomplished by modulating the current density either stepwise (discrete filters) or continuously (rugate filters)

Bragg Mirror

25 periods of HL refractive index pairs Current: 30mA-20mA; t etch : 10.11s -11.66s, T=-24.8°C.

The morphology of PSi structures depends on some factors:

- Si doping type (p or n) and doping concentration
- Composition and concentration of the solution
- Temperature

p⁺ Si <100> wafer resistivity: < 7 m Ω cm, }] \cong 3x10¹⁹ atoms/cm³

The electro-chemical cell is made out of a material resistant to HF.

The cathod is a platinum electrode and the anode is the silicon wafer itself.

The solution composition is: [HF] 18%, [H2O] 18%, [C2H5OH] 64%.

Porous silicon preparation – Single film

SEM single film low porosity

SEM single film high porosity

Porous silicon preparation – Multilayer

tempo (s)

Porous silicon preparation – Multilayer

High Refractive Index

- (low porosity)
- Low Refractive Index (high porosity)

Porous silicon preparation – Multilayer

SEM

Porous silicon as a good material for gas sensing with BSW

Porous silicon can:

 Change electrical or optical properties due to the presence of liquids or gases or even solids (CH₃OH, NH₃, NO₂)

E. Garrone, F. Geobaldo, P. Rivolo, G. Amato, L. Boarino, M. chiesa, E. Giamello, R. Gobetto, P. Ugliengo and A. Viale, Adv. Mater. 17, 528 (2005)

Force gas vapours phase transition to the liquid phase by capillarity condensation

S. Zangooie, R. Bjorklund, H. Arwin, Sensors and Actuators B, 43, 168 (1999)

Porous Silicon Multilayer – 25 periods – Otto coupling conditions

Measured

Theoretical

Porous Silicon Multilayer – 25 periods – SEW dispersion

Measured

Theoretical

Porous Silicon Multilayer – 25 periods – Exposition to ethanol vapours

FIG. 4: Real-time measurement of the reflected light in the spectral range $\lambda \in [1520, 1560]$ nm from the p-Si multilayer exposed at ethanol vapor during a limited time interval. (a) SEW at $\theta = 37.60^{\circ}$, (b) guided mode at $\theta = 47.49^{\circ}$. Field intensity distributions of the selected modes are shown beside.

Appl.Phys.Lett. 91, 241109 (2007)

Porous Silicon Multilayer – Ethanol vapour sensing

Porous Silicon Multilayer – Ethanol vapour sensing

Porous Silicon Multilayer – 25 periods – Ethanol vs Methanol sensing

Porous Silicon Multilayer – 25 periods – Exposition to ethanol vapours

However the air gap is preventing the sensitive area to be exposed to the vapours and the response time of the sensors is extremely slow.

SOLUTION 2 - Free standing membranes - Real-Time Gas Sensing

SOLUTION 2

p+-Si

d_{τ0τ}=37μm

Detach a membrane by a high current intensity pulse and glue it on a glass substrate by a photoresist layer with the 1DPC surface free to be exposed for gas sensing

(a) d_L=:240nm, n_L=1.89 @ λ=1530nm d_H:=215nm, n_H=2.15 @ λ=1530nm

1DPC with N=25

PS buffer layer $n_{B}=1.61 @ \lambda=1530$ nm

SOLUTION 2 - Free standing membranes - Real-Time Gas Sensing

Methanol

2-Propanol

SOLUTION 2 - Free standing membranes - Real-Time Gas Sensing

Vapour	p₀[a] [kPa]	m _v [μg]	p [g/cm ³]	n	Δλ _{MAX,EXP} [nm]	τ _s [min]	τ _L [min]	k [10 ⁻¹⁴ m²/s]
Methanol	16.20	293	0.792	1.33	56.3	0.6±0.1	24.4±0.8	9.9±0.3
Ethanol	7.54	196	0.789	1.36	39.8	1.14±0.07	33±3	6.9±0.6
2-Propanol	5.87	199	0.786	1.38	66.4	1.09±0.05	52±3	4.4±0.3

Application to Real-Time Gas Sensing

Equating the measured time constants t_L to $k(\pi/L)^2$ we extracted the diffusion coefficients k for the three alcools in the PS structure that scale linearly with respect to the molecular volume.