

2328-26

Preparatory School to the Winter College on Optics and the Winter College on Optics: Advances in Nano-Optics and Plasmonics

30 January - 17 February, 2012

Metamaterials current trends

N. Zheludev University of Southampton Southampton U.K.

Metamaterials

Nikolay Zheludev

Optoelectronics Research Centre Centre for Photonic Metamaterials University of Southampton, UK

www.nanophotonics.org.uk

Winter College on Optics: Advances in Nano-Optics and Plasmonics Triest, Italy 6-17 February, 2012

Metamaterials: mimicking Nature

Metamaterial is a manmade media with all sorts of unusual functionalities that can be achieved by **artificial structuring smaller than the length scale of the external stimulus**.

NIZ. Nature Materials 7, 420 (2008)

Natural Solid

Electromagnetic Metamaterial

Materials: from mega to nano

Microwave meta-materials

THz meta-materials

Photonic meta-materials

1st Metamaterial (J.Bose, 1898)

Sir Jagadish Chandra Bose, 1858 - 1937

Anisotropic Meta-molecule

Chiral Meta-molecule

Challenging nature through nanofabrication

Optical lithography

E-beam lithography

Ion-beam milling (FIB) Nano-imprint

Metamaterials = Negative Index Media & Superlens Metamaterials = Invisibility & Cloaking

Metamaterials and Southampton

2005: "Invisible Metals"
2007: Optical Magnetic Mirror
2006-2009: Chiral & "Stereo" metamaterials
2006-2009 Asymmetric Transmission

2006 EIT in metamaterials
2008 Lasing Spaser

2009 Coherent & incoherent metamaterials

2009-2010 Toroidal metamaterials
2010: Spectral collapse in metamaterials

•2010 Bas-relief metamaterials
•2010 Superconducting metamaterials
•2010 CNT in metamaterials (ultrafast switching)
•2010 Graphene in Metamaterials
•2010 Chalcogenide Glass in metamaterials (switching)
•2010 Coherent control in metamaterials
•2010 Superconducting H-Tc metamaterials

Photonic Metamaterials with engineered dispersion

Goal: Controlling optical properties

Applications: Spectral filters Delay lines Dispersion compensation Slow light

3D chirality (χιροσ)

Enantiomeric forms of chiral structures

"Any man who, upon looking down at his bare feet, does not laugh, has either no sense of symmetry or no sense of humour" (Descartes)

Nonlocality & Causality of Optical Response & Constitutive Equation

Optical Rotatory Power (optical activity) & Polarization

D. F. J. Arago and J-B. Biot at the beginning of the XIX century

1st Metamaterial (J.Bose, 1898)

"<u>In order to imitate</u> the rotation by liquids like sugar solutions, I made elements of <u>"molecules"</u> of twisted jute, of two varieties, one kind being twisted to the right (positive) and the other twisted to the left (negative)..."

"The twisted structure [of jute] produces an optical twist of the plane of polarization"

J.Bose. Proc. Royal Soc. of London, **63**, 146 (1898)

Polarization effect does not depend on the propagation direction

The First concept of Chiral Metal Metamaterial, 2000

The Born-Kuhn Molecular model (1915) Svirko–Zheludev-Osipov Meta-material solution (2000)

Microwave Chiral Metamaterails

Chiral Meta-molecule

Waveguide polarimeter

Chiral Metamaterial

Anechoic chamber

Polarization rotation per 1 wavelength is 700000 times that of quartz (micwowave samples) and 30 times that of quartz (optical samples)

Ellipticity and Polarization Rotation in Bi-layered Chiral Structure

Rogacheva, Fedotov, Schwanecke, and Zheludev. PRL, 97, 177401 (2006)

First Metamaterials Were Chiral

Rogacheva, Fedotov, Schwanecke, and Zheludev. PRL, 97, 177401 (2006)

The first "stereo" photonics metamaterial (2007)

Gyrotropy vs Chirality

No gyrotropy

Yes gyrotropy

Polarization rotation per 1 wavelength is 700000 times that of quartz (micwowave samples) and 30 times that of quartz (optical samples)

Photonic Chiral Bilayered (Stereo) Metamaterial

Key experimental results in 3D chiral metamaterials

Sculptured chiral photonic films & PCs

Young and Kowal (1956) Robbie, Brett, Lakhtakia (1996) Hrudey, Szeto, Brett (2006)

Kennedy, John et.al (2002) Seet, Misawa et al (2005) Pang, Sheng et.al (2005) Thiel, Wegener et al (2007)

Negative refraction & NI in microwave Chiral MM

Rogacheva, Zheludev et al (2006) Plum, Soukoulis, Zheludev (2009)

Gyrotropy in single-layered MM

Kuwata-Gonokami et al (2005)

Strong dichroism in bi-layered structure

Decker, Wegener et al. (2007)

Stereo photonic metamaterials

Plum, Zheludev et al (2007)

NI in THz

Zhang et al (2009)

Extrinsic Chirality & NR

Plum, Zheludev et

al (2008)

Volume Chiral NI Metamaterial

Wang, Souloulis et al (2009)

3D chirality (χιροσ)

Enantiomeric forms of chiral structures

"Any man who, upon looking down at his bare feet, does not laugh, has either no sense of symmetry or no sense of humour" (Descartes)

Is Molecular Chirality Needed for Optical Activity?

In <u>randomly oriented</u> ensembles of molecules molecular chirality IS needed for optical activity

Intrinsic chirality depends on symmetry of the medium

In <u>ordered structures</u> (crystal, metamaterial) optical activity will be seen along a "screw direction" of light propagation

Extrinsic chirality depends on combined symmetry of the medium and light wave

Current mode

 \bigcirc

Oblique incidence

Metamaterials: optical activity without chirality

Plum, Liu, Fedotov, Chen, Tsai, and Zheludev, PRL 102, 113902 (2009)

Extrinsic Chirality in Asymmetrically Split-ring Metamaterial

Metamaterial isoindex chiral microwave, and optical filters

Magnetic Mirror

Metamaterial Optical Magnetic Mirror (2005-2007)

Loss enhancement & Optical Analogue of the Meissner effect (superconductivity)

A S Schwanecke¹, V A Fedotov¹, V V Khardikov², S L Prosvirnin², Y Chen³ and N I Zheludev¹

Metamaterial Analog of EIT (2007)

New classes of metamaterial: Bas-relief & Intaglio (2010) (Continuous metallic metamaterials)

Bas-relief: Pattern raised above surface of the same material

Intaglio: Pattern inscribed in (not cut through) surface

Bas-relief & Intaglio Metamaterials: Colour by design

International Commission on Illumination CIE1931 colour space chromaticity diagram

Plasmonic mode in intaglio Metamaterial

Would it be nice to have ...?

Tuneable magnetic mirror (for specroscopy ...)
Tuneable delay line (for telecoms ...)
Tuneable colour (for my watch dial ...)
Tuneable spectral filter (for my camera ...)

Metamaterials: mimicking Nature, step 2

Electromagnetic Metamaterial Reconfigurable metamaterial

"Quantum" Metamaterial

Laser Lithography, Stuttgart & Karlsruhe

Projection lithography, Sandia

Directional solidification of eutectic, IEM, Warsaw

Self-assembled hinged pattern, John Hopkins

"Intaglio" all-metal metamaterial, Southampton

Colloidal nanocrystal arrays, Berkeley

Nonlinear metamaterial & Graphene Southampton & NTU, Singapore

Switchable metamaterial (QDs), Southampton Nonlinear metamaterial (CNTs), Southampton
MEMS & NEMS reconfigurable Metamaterials

Switchable & tuneable metamaterials

Goal: switchable and controllable properties

Applications: modulators, adaptable surfaces

Reconfigurable Metamaterials

Rapid thermal annealing

H. Tao, Padilla, Averitt et al (2009)

MEMS reconfigurable meta-molecules

W.M. Zhu, Ai Qun Liu et al. (2011)

Nanoscale features & movements are required for photonic metamaterials

Stretchable substrate

Pryce, Atwatter et al. (2010)

From controlling meta-molecules to controlling arrays

Tunable nano-Antenna

Tunable split-ring

Chiral meta-molecule

Meta-molecular spacing controls optical properties

Temperature-Controlled Photonic Metamaterials

Temperature-Controlled RPM: Fabrication

Temperature-Controlled RPM: Optical Characterization

Temperature-Controlled RPM: Performance

Reversible continuous tuning by cooling/heating Relative changes in transmission up to **50%**

Optical Forces in Metamaterials

Applications: Handling of small objects

Optical 'Gecko Toe'

Nonlinear & Switchable Metamaterials

Applications:

all-optical data processing telecom switching data storage Displays Lasers (modeloking/q-switcing) Optical limiting and conditioning

Violation of the Superposition Principle

Christian Huygens 1629 - 1695 "The most remarkable property of light is that light beams travelling in different and even opposite directions pass though one another without mutual disturbance" "Abhandlung über das Licht" 1678

V.L.Levshin (1896-1969) & S.I.Vavilov (1891-1951)

ZEITSCHRIFT FÜR PHYSIK VERLAG VON JULIUS SPRINGER. BERLIN

VERLAG VON JULIUS SPRINGER. BERLIN 1926

Die Beziehungen zwischen Fluoreszenz und Phosphoreszenz in festen und flüssigen Medien. Von S. J. Wawilow und W. L. Lewschin in Moskau. Mit sieben Abbildungen. (Eingegangen am 27. Dezember 1925.)

Giant nonlinearity and switching with photonic metamaterials

Plasmonic enhanced cubic nonlinearity

Dani, Ku, Upadhya, Prasankumar, Brueck, Taylor Nano Lett. 9, 3565 (2009)

Nikolaenko, Angelis, Boden, Papasimakis, et. al. Phys. Rev. Lett. 104, 153902 (2010)

Cho, Wu, Ponizovskaya, Chaturvedi, Bratkovsky, Wang, Zhang, Wang and Shen Opt. Express 17, 17652 (2009)

Wurtz, Pollard, Hendren, Wiederrecht, et. al. Nat. Nanotech. 6, 107 (2011)

Ultrafast Nonlinear Metamaterials with Carbon Nanotubes through plasmon- exciton coupling

Exciton Resonance

Plasmonic & Excitonic absorption lines

Combinatorial approach to metamaterials research

Carbon Nanotubes in a Photonic Metamaterial

Andrey E. Nikolaenko,¹ Francesco De Angelis,² Stuart A. Boden,³ Nikitas Papasimakis,¹ Peter Ashburn,³ Enzo Di Fabrizio,² and Nikolay I. Zheludev¹

Giant Nonlinearity through plasmon-exciton coupling

System	% T modulation	Fluence, µJ/cm²	Response time, fs	J x fs/cm²
Metamaterial + CNTs PRL,104, 153902 (2010)	10 %	40	~500fs	0.02

Nonlinearity of the Metamaterial's framework

Gold Nonlinear Metamaterial

Metamaterial nanostructure

Nonlinear Metamaterial: THz optical modulation bandwidth

Ren, Zheludev et.al. Adv. Mat. DOI: 10.1002/adma.201103162

System	% T modulation	Fluence, µJ/cm²	Response time, fs	J x fs/cm²
Gold metamaterial	40 %	270	~ 40fs	0.01

Strong Resonant Field Localization (in the metal itself!)

Nonlinear absorption coefficient of plasmonic metamaterial

 $\beta_{\rm eff} = \beta_{\rm Au} \frac{n^2}{n_{\rm eff}^2} \operatorname{Re} \left\{ \frac{\int E_{\rm loc}^2 |E_{\rm loc}|^2 \, dv}{E_0^2 |E_0|^2 \, V} \right\}$

Incident field

Local field

Nonlinearity control: enhancement OR loss compensation

and Zheludev . Adv. Mat. DOI: 10.1002/adma.201103162

Ultrafast Au metamaterial: Tuneability & Application

System	% T modulation	Fluence, µJ/cm²	Response time, fs
Gold metamaterial	40 %	270	~ 40fs
Metamaterial + a-Si Opt. Exp. 17, 17652 (2009)	30 %	300	>750fs
Metamaterial + CNTs PRL,104, 153902 (2010)	10 %	40	~500fs
Plasmonic nanorods Nature NanT 6,107 (2011)	80 %	7000	~1ps

From Nonlinear Optics to Nonlinear Plasmonics

Nonlinear optical activity: 10⁷ times stronger than natural media

1979: Ahmanov, Zheludev et.al, JETP Lett, 29, 5 (1979)

FOM ~ 10^{-11} deg·cm/W

2011: Ren, Plum Zheludev, TBP

Phase Change Metamaterials

Phase change metamaterials

Goal: Non-volitile switching

Applications: data storage, displays

Nanoscale Thickness Electro-optical Modulator: Chalcogenide Glass @ Metamaterial

Wavelength, nm

Graphene @ Metamaterials

Graphene in a photonic metamaterial

¹2 April 2010 / Vol. 18, No. 8 / OPTICS EXPRESS 8353 Nikitas Papasimakis,¹ Zhiqiang Luo,² Ze Xiang Shen,² Francesco De Angelis,^{3,4} Enzo Di Fabrizio,^{3,4} Andrey E. Nikolaenko,¹ and Nikolay I. Zheludev¹*

Optical microscope images

Helim-Ion microscope images

Nanoscale light localization in metamaterials

Goal: Controlable hot-spots in metamaterials

Applications: Imaging & data storage, routing

Manipulation of nanoscale optical fields

Spatial phase-shaped beams Ultrafast coherent control Tailored plasmon interference Probe δ=1° TM polarization 0.3 Circular y (hum) polarization TE polarization Photoemission ±2 fs dither \ electron microscopy Delay -0.3 Photoemission Evec 0.3 intermediate y (hum) stales -axis d 0.3 250 nm 250 nm 0.3 (mm) v 0 -0.3 τ=213 fs t=13 fs -0.9 -0.6 -0.3 0.3 0.6 0.9 0 M. Stockman, M. Aeschlimann, et. al, B. Gjonag, et. al, (2011) G. Volpe, et. al, (2009) (2006 - 2010)

/P

5 µm

Coherent control of nanoscale field localization

T. S. Kao,¹ S. D. Jenkins,² J. Ruostekoski,² and N. I. Zheludev^{1,*}

Coherent control of nanospots: experiment

Digitally addressable placing of the hotspot

Metamaterials unit cell: 440nm, $\lambda = 852$ nm. Spatial wave-front profile: $\varphi(\vec{r}) = (\Delta \varphi/2) \sin(kx) \sin(ky)$, $k = 2\pi/a$

CCD images

Metamaterial Light sources

sources & lasers

Applications: nanophotonics

The Lasing Spaser (2008) (a coherent source of optical radiation fuelled by plasmons)

Quantum Dots in Plasmonic Metamaterial: Enhanced Luminescence

Emission Linked to Plasmonic Resonance

Electron-induced emission spectra Au/Si₃N₄ METAMATERIAL

Impact configuration 6000 Metamaterial enhancement of Emission intensity, arb units electron-induced Electron beam light emission 300 0 70 nm Au Surface plasmons unit cell size, nm 100 nm Si₃N 0 Fly by configuration 45 220 240 260 Optical absorption, % 270 280 25 size Х 5 week ending 11 SEPTEMBER 2009 PHYSICAL REVIEW LETTERS 550 750 PRL 103, 113901 (2009) 650 850 Ş Wavelength, nm Light Well: A Tunable Free-Electron Light Source on a Chip G. Adamo,¹ K. F. MacDonald,^{1,*} Y. H. Fu,² C-M. Wang,² D. P. Tsai,² F. J. García de Abaio,³ and N. I. Zheludev

Quntum Superconducting Metamaterials

Goal: High sensetivity

Applications: New THz & Millimetre wave devices & quantum information platform

Low- vs high- temperature superconductors

Case for Superconducting Plasmonics

Low frequency plasmonics with easily integrated active control functionality

100GHz free-space (millimetre waves) spectrometer

Receiving/Transmitting Antenna He Cryostat Coldfinger Receiving/Transmitting Antenna

Sharp resonances in superconducting metamaterials disk array

Towards digital / quantum metamaterials

Conventional metamaterial	Quantum metamaterial
Classical plasmonic	Quantum-interference
resonator	circuit

Classical plasmonic resonator	Quantum- interference circuit
Excitation	
Plasmon	Quantum Qbit
Mode of Operation	
Analogue	Digital (Quantized flux)
Advantages	
Simple	Quantum level of operation, extremely high nonlinearities (100 000 times higher than p- n junction)

Superconducting metamaterial: Josephson Junctions

Flux dynamics

$$\stackrel{\bullet}{\Phi} + \gamma \stackrel{\bullet}{\Phi} + \beta \sin(2\pi \Phi) + \Phi = \Phi_{ext}$$

Du, Chen, Li, 2006 Lazarides & Tsironis, 2007

Southampton Nb – Al_2O_3 – Nb Josephson Junction Arrays

Optical micrograph

Profile

Metamaterials: the technology development curve

In the Past:

Metamaterial is a material

Structuring brings new properties

Analoguelinear

At Present:

Metamaterial is a **device**

Structuring brings new functionality

In the Future:

Metamaterial is a system

Structuring brings new functionalities & integration

Analogue-Nonlinear

Digital

Southampton Centre for Photonic Metamaterials

www.nanophotonics.org.uk