Rt

1C

R

i paduct
ECJ—‘IJF fJ

Joint DEMOCRITOS/SISSA

Laboratory for @-Science

Outline

* Introducing the problem:

- What does testing software mean ?

- Why,where,when,who, what to test?
 Scientific software testing..

- What is scientific computing ?

- Why is so difficult to test simulations ?
— Reviewing verification/validation

- Some idea/suggestions

- Homework

Aim of this lecture

Share some interesting ideas i read about

Tell about some current effort to apply some of such ideas to a
scientific software development

Convince you that testing scientific software is needed

Disclaimer:

— Content of these slides come from many sources all around the web;
some slides are mine, some other are taken from other presentations
without modification, some other are slightly modified

First definitions : errors and faults

Error

is @ measure of the difference between a measured or
calculated value of a quantity and what is considered to
be its actual value.

Faults

Code faults are mistakes made when abstract algorithms
are implemented in code.

Faults are not errors, but they frequently lead to errors.

Second definition: testing

« Software testing is a process by which one or more expected behaviors
and results from a piece of software are exercised and confirmed. Well
chosen tests will confirm expected code behavior for the extreme
boundaries of the input domains, output ranges, parametric combinations,
and other behavioral edge cases.

(from yesterday Tommy's lecture)

« Software testing can be stated as the process of validating and verifying
that a software program/application/product:

—- meets the requirements that guided its design and development;
— works as expected; and

— can be implemented with the same characteristics.

(from wikipedia)

Third definition: Verification validation

Verification: ""Are we building the product right ?"

— The software should conform to its specification

Validation: ""Are we building the right product 2 "

— The software should do what the user really requires

V & V must be applied at each stage in the software process

Two main objectives:

— Discovery of defects in a system

— Assessment of whether the system is usable in an operational situation

Software stages: waterfall model

=
=
==
ey

Verification

Is all the above true for scientific codes/packages/
simulation method ?2?

e Sure'!

* But something more is required...

The 5 W of testing: Why testing ?

e To find faults

e To provide confidence

— of reliability

— of (probable) correctness

— of detection (therefore absence) of particular faults
e Otherissues include:

- — Performance of systems (i.e. use of resources like time, space,
Bandwidth,...).

- ‘“...ilities” can be the subject of test e.g. usability, learnability,
reliability,availability, etc..

The 5 W of testing: When testing ?

* When:
- Always!
* Different granularity:

— When I/they change of the code
— at every night to check possible problem
- When a new feature/release is available

— When we start using a new package for scientific research

The 5 W of testing: Who should test ?

e Who:

— You as developer

— You as part of a developing team:
* Try to test things you did not write
e Find some other to test you own software
— You as user:
* Is this software/package/routines/code what | really need?

- You as scientific user (never use scientific code without your
own test !!!)

The 5 W of testing: Where to test?

e Software point of view

— On any single function of your code:
* Unit testing

— On the code as a whole

* Regression tests

* Hardware point of view

— On all the possible platforms you have at disposal

* Ensure portability of software and of scientific output !

The 5 W of testing: What should | test?

e Software characteristics:
— Usability
— Portability
— Performance
— Reliability
— Scalability

e Scientific Software correctness

Yet another definition: Scientific Computing

* Computational science (or scientific computing) is the field of
study concerned with constructing mathematical models and
quantitative analysis techniques and using computers to
analyze and solve scientific problems.[Wikipidia]

* Distinguish features:

— concerned with variables that are continuous rather than
discrete

— concerned with approximations and their effects

* Approximations are used not just by choice: they are
inevitable in most problems

14

What do you need to do scientific computing ?

 Computers
- (generally very huge/large and/or many of them)
e Software:

- Something that allow you to use the computer (operating
system/ middleware/compilers/libraries)

- Something that allow you to simulate/compute what you
needed (scientific programs [codes)

e Goodwill:

— Learn how to use the right tools among a huge number of them

— Learn how to write/use scientific program

Source of approximations

e Before computation begins:
— Modeling: neglecting certain physical features

— empirical measurements: can’t always measure input
data to the desired precision

— previous computations: input data may be produced
from error-prone numerical methods
* During computation:

— truncation: numerical method approximate a continuos
entity

— rounding: computers offer only finite precision in
representing real numbers

16

Vocabulary

Real World

1
'+ measurement errors

Measurements

I

i + approximations

1 .
v+ truncation errar
1

1
! + code faults

Source Code

I

E + compiler optimization
Machine
Instructions

E + rounding error
v

Output
+ errors

D. Hook and D. Kelly (Queen's and RMC)

Testing Scientific Software

Scientific software development
involves a number of model
refinements in which errors may
be introduced.

Program outputs include the
accumulation of all these errors.

ICSE '09

4 /31

Stupid example

« Computing surface area of Earth using formula
A=47r?

* This involves several approximations:
- Modeling: Earth is considered as a sphere...
— Measurements: value of radius is based on empirical methods
— Truncation: value for m is truncated at a finite number..

— Rounding: values for input data and results of arithmetic
operations are rounded in computer.

18

Rounding error

« Difference between result produced by a given algorithm
using exact arithmetic and result produced by the same
algorithm using rounded arithmetic

e Due to the inexact representation of real numbers and
arithmetic operations upon them

e To understand where and how they turn out we need to know
how computers deals with numbers..

e Error analysis techniques: how are your equations sensitive to
roundoff errors ?

— Forward error analysis: what errors did you make ?

— Backward error analysis: which problem did you solve exactly ?

19

Vocabulary

Real World

1
'+ measurement errors

Measurements

I

i + approximations

1 .
v+ truncation errar
1

1
! + code faults

Source Code

I

E + compiler optimization
Machine
Instructions

E + rounding error
v

Output
+ errors

D. Hook and D. Kelly (Queen's and RMC)

Testing Scientific Software

Scientific software development
involves a number of model
refinements in which errors may
be introduced.

Program outputs include the
accumulation of all these errors.

ICSE '09

4 /31

Vocabulary

Real World

1
1
i + measurement errors
1

Measurements

e d e

o |+ approcimations _», Validation and verification
| activities are applied in an

o EEEE 1 attempt to identify or bound

E o @{t } + truncation error o th

& , .1 these errors.

I i E o . .

T i Gdefauls 11 In addition to validations and

: . verifications, we also suggest that
: =~ 11 computational scientists should

| @ﬁ 1 + compiler optimization: ' ! o]

1 c,o‘f-g? : i1 conduct code scrutinizations.

i I ‘,{5& Instructions

| : §+ rounding error | E

P ¥ ;

thN Output ;i

D. Hook and D. Kelly (Queen's and RMC) Testing Scientific Software ICSE '09 5/31

Scientific simulation Context

» Our simulations provide approximate solutions to problems
for which we do not know the exact solution.

This leads to two more questions:
* How good are the approximations?

e How do you test the software?

22

A Numerical Simulation is the Conclusion of a Long
Development Process

Model: Governing Equations, ICs, BCs,
Submodels (constitutive models, Implementation: Compute the

closure relations, etc.) approximate solution
Here, model does not mean code

Algorithms Implementation
(FEM, ALE, (C++, Linux,
AMG, etc.) MPI, etc.)

Governing

— Numerical

Solutions

Algorithms: Generate a solvable discrete
system; solution of the discrete system is an
approximate solution of the model

What is code verification?

Code Verification
How good is your code?
5 Y SQE
Algorithms Implementation
(FEM, ALE, (C++, Linux,
e) AMG, etc.) P MPI, etc.) Y —
- Gover.nlng ~ Discrete ~ Numerical
— q Equations q Solutions
D G
How can the Has the algorithm

algorithm be been correctly
improved? implemented?

What else do we need?

How good is your simulation?

How good is your code?

Are these
equations
adequate?

Governing Discrete

Equations

Equations
(IDEs)

/U
alidation

Solution Verification
Code Verification
SQE

How large is the
numerical error?

Numerical
Solutions

Verification and Validation (V&V) Definitions

Verification: Are the equations solved correctly?
(Math)

Validation: Are the equations correct?
(Physics)

— Verification: The process of determining that a model implementation

accurately represents the developer’s conceptual description of the model
and the solution to the model.

— Validation: The process of determining the degree to which a model is an

accurate representation of the real world from the perspective of the
intended uses of the model.

V&YV targets applications of codes, not codes.

a few more informal Definitions

Software Quality Manage software complexity
Engineering (SQE)
Code Verification Assess algorithms and their

implementation vs. exact solutions

Solution Verification Estimate discretization error

Validation Assess physics models vs.
experimental data

SA /UQ Assess sensitivity of answer to input
parameters

An ingredients list for predictive simulation, not a menu.

The ASME proposed a V&V workflow.

Reality of Interest
(Component, Subassembly, Assembly, or System)

Abstraction

Conceptual

Model |

T 1
Mathematical

; Physical
Modeling Modeling
R Mathematical Physical
T Model | Model |
' - - -
I
Code Implementation Implementation

Verification
A
\
, Computational Preliminary Experiment
" el Model] Calculations Design

I
Calculation

Calculation Experimentation
Verification
L}
s\
s Simulation Experimental
Results Data |
Uncertainty Validation Uncertainty
Quantification ’ % Quantification

N\
K 4
Simulation Quantitative Experimental
Outcomes) Comparison Outcomes

Modeling, Simulation

Revise
Appropriate
Model
or
Experiment

Acceptable
Agreement? No

Yes

L

Gext Reality of Interest in the Hierarchy)

& Experimental Activities

= = = = Assessment Activities

NM-11050-32

* This V&V process flowchart
is taken from the ASME
Solid Mechanics V&V
guide.

* Note the positions of code
verification, calculation
verification, validation, and
UQ in this workflow
diagram.

ASME, V&V 10-2006 Guide for Verification and
Validation in Computational Solid Mechanics,
American Society of Mechanical Engineers
(2006).

Question: is ASME approach ok for everything?

e Homework #1:

— Try to answer this question on your blog : can apply ASME
workflow to my computational project ?

Tests for simulations...

Validation
sce

Apps

Code Verification As A Continuous Process

* To set up a verification
problem once takes while 1:
significant effort — steep
learning curve,
infrastructure is not in
place

run verification suite

* Running a verification analysis you have maintained
takes minimal work

* Without regular, automated verification testing,
verification results go stale quickly - they do not reflect
the current state of the code

Code Verification Is Not Free

Principal Costs:

* |Infrastructure development

* Test development

Recurring Costs — A tax on development:

* Maintenance of existing tests

* Code development becomes a very deliberate process

Sustainable verification: Benefits outweigh costs

Code Verification Identifies Algorithmic Weaknesses

One purpose of code verification is to find bugs.

* Code verification often finds bugs that are subtle
and otherwise difhicult to identify.

* The eyeball norm finds most obvious bugs quickly.

Perhaps a better use of code verification is to guide code
development.

* Some bugs are algorithmic and conceptual.
* Code verification identifies algorithmic weaknesses.
* Large errors are a weakness.

The Most Efficient Code Verification is Done by
Code Developers

* Code developers best understand the numerical
methods they are using

* Code developers are best able to use the results of
code verification (and other forms of assessment)
to improve the algorithms they use

Verification Testing Must Be a Team Ethic

* Discipline is required to keep a “clean” test suite — to
keep all tests passing; “stop-the-line” mentality

* If only part of the team values verification, that part is
always carrying the other developers

* Maintaining an automated verification test suite is
probably necessary but definitely not sufficient

* Developers should be using verification tests
interactively

a

A notional example of validation analysis illustrates the

incorporation of uncertainty.
Final Temperature Value

Validation:

* Compare simulation data
histogram to a test data
histogram.

* Quantify amount of “overlap”
between histograms.

* Assess sufficiency of overlap.

Mod/Sim Test Data

Data

4

% in Bin

Uncertainty Quantification:
* UQ methods generate an
Temeprature [deg C ensemble of mod/sim data.

* UQ methods are used to generate statistical information on the code output.
— Probability distribution on Temperature, given various x,,...,x, inputs.

— Correlations (i.e., trends) of Temperature vs. x,,...,X,.

— Mean(T), StdDev(T), Probability(T>T
redit=FrmrFrocano

critical)

Complex problems require a
hierarchical approach to validation.

- 1‘ Prediction of Full-System
T AN Response Quantity of Interest . . o
Scaling Arguments /N . <+ — Validation of “full-physics
Ror ks Wil FoX ipe / v i systems is usually rare.
Yo / Full System \
| - Rare
’ . |

Propegate Validation of “coupled-
Uncertainties Scaled Prototypes hvsics”] :
Fewer IETs Coupled physics” systems is often

Calibration/ complex and challenging.
Component Validation
Identification/ Multiphysics Components
Ranking and Subsystems
Fewer Integral Effects Tests
Validation of “single-physics”
C t i
Single Pl ysics Components Cﬁ:ﬁ;ﬂiﬁ SyStemS is the mOSt
Many Separaie CEfferts Tests Validation COMMON anaIySIS.
e e~

edit: D_Kothe et al., Consortium for Advanced Simulation of Light Water Reactors (CASL), 2010. 37

Verification is orthogonal to UQ and SA

Inputs: parameters to governing
equations, algorithms, and discrete
equations

V4

(

Governing Simulation
Equations i l

Discrete
Equations

Solutions

(Apprommate

)

* Code Verification: Given
Inputs compute exact
error to examine code.

* UQ/SA: Given code
(“model”) compute
outputs to examine
uncertainty, sensitivity.

Outputs: quantities of
interest

Alternative statement: UQ/SA and
Code Verification are
complementary.

The fundamental tension: find out as much as you can, but

recognize you can’t eliminate all risk

If we could validate here, we
wouldn’t need simulations.

_/

<
-~ ‘ Prediction of Full-System
T AN Response Quantity of Interest
Scaling Arguments / .
for Use with Full Size / \ F{fﬂ?’?fﬁm Is there any evidence for the

ailgaion I .

Sysiome / Full System | possibility of a catastrophic
| - Rare .
ki failure?
Propagate
Uncertainties Scaled Prototypes
Fewer IETs Coupled Assessments tell where to
P
P focus resources to reduce
Component Multiohysics C T
Identification/ ultiphysics Components uncertainties.
Ranking and Subsystems
Fewer Integral Effects Tests
We can often make
o ; . : :
SIE ek aC i onants componant pred!ctlons with confidence
Many Sepcrate Effects Tests validation (but it takes a lot more work
e than you might think.)
Image: Kothe et al., Consortium for Advanced Simulation of 39

Li

tors (CASL) proposal, 2010.

Tim Trucano’s observations on V&\V...

* Key V&V themes have not changed “for decades”:

— “Codes are not solutions, people are solutions.”

— “Credibility of computational simulations
for defined applications is evolutionary...”

— “... at worst, credibility is non-existent in specific applicationsOtd ldeas In V&V

— “Single calculations will never be ‘the right answer’ for hard
p ro b | e m S . ” Optimization and Ur;rtiemrt:::;;(;antification (01441)

— “Real V&V and real UQ are a lot of work.” August, 2011

Too many acknowledgments are appropriate to list adequately,
but | will emphasize my extreme debt to Marty Pilch and Bill
Oberkampf

* Trucano’s four insights on V&V: T
1. “V&V — pay me now or pay me later.”
2. “Journal editorial policies and practices must change.”
3. “Ask ‘What’s good enough?’”
4. “Saying you don’t need verification is like saying you don’t need oxygen.”

Final ideas: what should we provide....

A software infrastructure to support testing...
* Abi
* Ab
* Ab

ity to run a large number of simulations repeatedly

ity to compare results with a baseline

ity to report pass/dift/fail

* Run on platforms of interest at regular intervals

Homework

* Describe on the blog:

— which kind of testing procedure you adopted so far in your
code

— Which kind verification are you plan to use ?

— Which kind of validation are you plan to use?

02/23/12

GELA workshop, Paris 20/06.2006

Joint DEMOCRITOS/SISSA
Laboratory for @-Science

Outline

* Introducing the problem:

- What does testing software mean ?

- Why,where,when,who, what to test ?

* Scientific software testing..

What is scientific computing ?

Why is so difficult to test simulations ?

Reviewing verification/validation

Some idea/suggestions

Homework

02/23/12 GELA workshop, Paris 20/06.2006

Aim of this lecture

» Share some interesting ideas i read about

Tell about some current effort to apply some of such ideas to a
scientific software development

« Convince you that testing scientific software is needed

o Disclaimer:

- Content of these slides come from many sources all around the web;
some slides are mine, some other are taken from other presentations
without modification, some other are slightly modified

02/23/12 GELA workshop, Paris 20/06.2006

First definitions : errors and faults h

Error

is a measure of the difference between a measured or
calculated value of a quantity and what is considered to
be its actual value.

Faults

Code faults are mistakes made when abstract algorithms
are implemented in code.

Faults are not errors, but they frequently lead to errors.

02/23/12 GELA workshop, Paris 20/06.2006 4

Second definition: testing

 Software testing is a process by which one or more expected behaviors
and results from a piece of software are exercised and confirmed. Well
chosen tests will confirm expected code behavior for the extreme
boundaries of the input domains, output ranges, parametric combinations,
and other behavioral edge cases.
(from yesterday Tommy's lecture)
 Software testing can be stated as the process of validating and verifying
that a software program/application/product:
- meets the requirements that guided its design and development;
- works as expected; and

- can be implemented with the same characteristics.

(from wikipedia)
02/23/12 GELA workshop, Paris 20/06.2006 5

Third definition: Verification validation

Verification: "Are we building the product right 2"

- The software should conform to its specification

Validation: "Are we building the right product ? "

- The software should do what the user really requires

V & V must be applied at each stage in the software process

Two main objectives:

- Discovery of defects in a system

- Assessment of whether the system is usable in an operational situation

Software stages: waterfall model “
Implementation

L 7

Is all the above true for scientific codes/packages/
simulation method 222

e Sure!

* But something more is required...

-

The 5 W of testing: Why testing?

» To find faults

» To provide confidence

- of reliability

- of (probable) correctness

- of detection (therefore absence) of particular faults
 Otherissuesinclude:

- —Performance of systems (i.e. use of resources like time, space,
Bandwidth,...).

- “...ilitles” can be the subject of test e.g. usability, learnability,
reliability,availability, etc..

02/23/12 GELA workshop, Paris 20/06.2006

The 5 W of testing: When testing ? h

* When:
- Always!
« Different granularity:
- When I/they change of the code
- at every night to check possible problem
- When a new feature/release is available

- When we start using a new package for scientific research

10

The 5 W of testing: Who should test ?

* Who:

- You as developer
- You as part of a developing team:

* Try to test things you did not write

* Find some other to test you own software
- You as user:

* Is this software/package/routines/code what | really need ?

You as scientific user (never use scientific code without your
own test !!!)

11

The 5 W of testing: Where to test ?

» Software point of view

- On any single function of your code:

* Unit testing

- On the code as a whole

* Regression tests

* Hardware point of view

— On all the possible platforms you have at disposal

* Ensure portability of software and of scientific output !

12

The 5 W of testing: What should | test?

» Software characteristics:
- Usability
Portability

Performance

Reliability

Scalability

» Scientific Software correctness

13

Yet another definition: Scientific Computing

* Computational science (or scientific computing) is the field of
study concerned with constructing mathematical models and
quantitative analysis techniques and using computers to
analyze and solve scientific problems.[Wikipidia]

* Distinguish features:

- concerned with variables that are continuous rather than
discrete

— concerned with approximations and their effects

* Approximations are used not just by choice: they are
inevitable in most problems

4/3/99 14

What do you need to do scientific computing ? h

» Computers
- (generally very huge/large and/or many of them)
» Software:

- Something that allow you to use the computer (operating
system/ middleware/compilers/libraries)

- Something that allow you to simulate/compute what you
needed (scientific programs /codes)

* Goodwill:
- Learn how to use the right tools among a huge number of them

- Learn how to write/use scientific program

15

Source of approximations

* Before computation begins:
- Modeling: neglecting certain physical features

- empirical measurements: can’t always measure input
data to the desired precision

- previous computations: input data may be produced
from error-prone numerical methods

* During computation:

- truncation: numerical method approximate a continuos
entity

- rounding: computers offer only finite precision in
representing real numbers

4/3/99 16

Vocabulary

Real World

i + measurement errors

Measurements

H
i + approximations
H

1 1 truncation error

i
i + code faults

Source Code

E + compiler optimization

Machine
Instructions

{ + rounding eror
v

Output

+ errors

! D. Hook and D. Kelly (Queen’s and RMC)

Testing Scien

Scientific software development
involves a number of model
refinements in which errors may
be introduced.

Program outputs include the
accumulation of all these errors.

tific Software ICSE '09

4/31

Stupid example

» Computing surface area of Earth using formula
A=4mnr?

 This involves several approximations:
Modeling: Earth is considered as a sphere...

- Measurements: value of radius is based on empirical methods
Truncation: value for m is truncated at a finite number..

Rounding: values for input data and results of arithmetic
operations are rounded in computer.

4/3/99 18

Rounding error

4/3/99

Difference between result produced by a given algorithm
using exact arithmetic and result produced by the same
algorithm using rounded arithmetic
Due to the inexact representation of real numbers and
arithmetic operations upon them
To understand where and how they turn out we need to know
how computers deals with numbers..
Error analysis techniques: how are your equations sensitive to
roundoff errors ?

- Forward error analysis: what errors did you make ?

- Backward error analysis: which problem did you solve exactly ?

19

Vocabulary

Real World

i + measurement errors

Measurements

H
i + approximations
H

1 1 truncation error

i
i + code faults

Source Code

E + compiler optimization

Machine
Instructions

{ + rounding eror
v

Output

+ errors

! D. Hook and D. Kelly (Queen’s and RMC)

Testing Scien

Scientific software development
involves a number of model
refinements in which errors may
be introduced.

Program outputs include the
accumulation of all these errors.

tific Software ICSE '09

4/31

Vocabulary

Real World

1 + measurement errors

Measurements

Validation and verification
activities are applied in an
attempt to identify or bound
these errors.

In addition to validations and
verifications, we also suggest that
o computational scientists should

a%pa conduct code scrutinizations.
5 & Ma =
(‘P Instructions

E + rounding error
v

Output

+ errors

. Hook and D. Kelly (Queen's and RMC) Testing Scientific Software ICSE '09 5 /31

Scientific simulation Context

» Our simulations provide approximate solutions to problems
for which we do not know the exact solution.

This leads to two more questions:
* How good are the approximations?

* How do you test the software?

4/3/99 22

A Numerical Simulation is the Conclusion of a Long
Development Process

Model: Governing Equations, ICs, BCs,
Submodels (constitutive models, Implementation: Compute the

closure relations, etc.) approximate solution
Here, model does not mean code

Algorithms Implementation
(FEM, ALE, (C++, Linux,

' AMG, etc.) MPI, etc.)
Goverpmg Discrete Numerical
Equations Equations Solutions
(IDEs or PDEs) i

Algorithms: Generate a solvable discrete
system; solution of the discrete system is an
approximate solution of the model

02/23/12 23

Another piece, not illustrated in this diagram, is
that the model(s), algorithms, and implementation
require input parameters which are uncertain.

Parameter Uncertainty

What is code verification?

Code Verification
How good is your code?
Algorithms Implementation
(FEM, ALE, (C++, Linux,
AMG, etc.) MPI, etc.)

) (e

Equations
How can the Has the algorithm
algorithm be been correctly
improved? implemented?
02/23/12 24

Code verification is a requirement for solution
verification, validation, and UQ

Strict and loose code verification, definitions
and practice

What else do we need? ‘

AlU
How good is your simulation? Validation
Solution Verification

How good is your code? Code Verification

SQE
Are these
equations How large is the
adequate? numerical error?

~ Equations
\ (IDEs)

02/23/12 25

Solutions

Code verification is a requirement for solution
verification, validation, and UQ

Strict and loose code verification, definitions
and practice

Verification and Validation (V&V) Definitions

Verification: Are the equations solved correctly?
(Math)

Validation: Are the equations correct?
(Physics)

— Verification: The process of determining that a model implementation

accurately represents the developer’s conceptual description of the model

and the solution to the model.

— Validation: The process of determining the degree to which a model is an

accurate representation of the real world from the perspective of the
intended uses of the model.

V&YV targets applications of codes, not codes.

26

26

a few more informal Definitions

Software Quality Manage software complexity
Engineering (SQE)

Code Verification Assess algorithms and their
implementation vs. exact solutions

Solution Verification Estimate discretization error

Validation Assess physics models vs.
experimental data

SA/UQ Assess sensitivity of answer to input
parameters

Aningredients list for predictive simulation, not a menu. ,,

Each method of assessment is independent,
each answers a different question.

The ASME proposed a V&V workflow.

Reality of Interest
(Component, Subassembly, Assembly, or System)

~
_/

I
Abstraction

Model
Mathematical Physical
Modeling Modeling
_[Mathematical Physical
Model Model
'
Code Implementation Implementation
Verification
\ Revise
g y pprop
3 Calculations Model
or
[Experiment
Calculation Calculation Experimentation
Verification
\
\
~. Simulation Experimental
Results Data
Uncertainty Validation Uncertainty
Quantification ~# . Quantification
(3 4
i Quantitat y
Outcomes Comparison Outcomes
Modeling, Simulation Acceptable i
& Experimental Activities Agreement? ©
- = = = Assessment Activities
Yes =
Next Reality of Interest in the Hierarchy) £
3
H

(
—
——

* This V&V process flowchart
is taken from the ASME
Solid Mechanics V&V
guide.

* Note the positions of code
verification, calculation
verification, validation, and
UQ in this workflow
diagram.

ASME, V&V 10-2006 Guide for Verification and
Validation in Computational Solid Mechanics,
American Society of Mechanical Engineers
(2006).

28

Question: is ASME approach ok for everything? h

e Homework #1:

— Try to answer this question on your blog : can apply ASME
workflow to my computational project ?

02/23/12 29

Tests for simulations... h

Validation

SA/UQ
nd; size of°box

BI“@/M} SQE gnhes
is relative weigh

Clarify the metric for regression tests:
yesterday’s results

Code librarian oversees building and testing
across different platforms.

Nightly regression + verification is thousands
of simulations, mostly small and fast. Run on
Linux with multiple compilers, Sun, IBM

Long tests run weekly on one or two platforms
(currently in transition)

Performance is mostly scaling. We also check
runtimes piggy-backed on Regression.

Code Verification As A Continuous Process

* To set up a verification
problem once takes while 1:
significant effort — steep
learning curve,
infrastructure is not in
place

run verification suite

* Running a verification analysis you have maintained
takes minimal work

* Without regular, automated verification testing,
verification results go stale quickly - they do not reflect

the current state of the code
02/23/12 31

Code Verification Is Not Free

Principal Costs:

* Infrastructure development

* Test development

Recurring Costs — A tax on development:

* Maintenance of existing tests

* Code development becomes a very deliberate process

Sustainable verification: Benefits outweigh costs

02/23/12 32

Code Verification Identifies Algorithmic Weaknesses

One purpose of code verification is to find bugs.

* Code verification often finds bugs that are subtle
and otherwise difficult to identify.

* The eyeball norm finds most obvious bugs quickly.

Perhaps a better use of code verification is to guide code
development.

* Some bugs are algorithmic and conceptual.
* Code verification identifies algorithmic weaknesses.
* Large errors are a weakness.

02/23/12 33

Enhancing code development is an additional
benefit of code verification.

The Most Efficient Code Verification is Done by
Code Developers

* Code developers best understand the numerical
methods they are using

* Code developers are best able to use the results of
code verification (and other forms of assessment)
to improve the algorithms they use

02/23/12 34

All known examples of lab verification exercises
carried out by non-code-team members were very
expensive and often failures.

Verification Testing Must Be a Team Ethic

* Discipline is required to keep a “clean” test suite — to
keep all tests passing; “stop-the-line” mentality

* If only part of the team values verification, that part is
always carrying the other developers

* Maintaining an automated verification test suite is
probably necessary but definitely not sufficient

* Developers should be using verification tests
interactively

02/23/12 35

A notional example of validation analysis illustrates the
incorporation of uncertainty.
Final Temperature Value

Validation:
* Compare simulation data

5 histogram to a test data
Test Data histogram.

* Quantify amount of “overlap”
between histograms.
* Assess sufficiency of overlap.

% in Bin

Uncertainty Quantification:
* UQ methods generate an
Temeprature [deg C ensemble of mod/sim data.

* UQ methods are used to generate statistical information on the code output.
— Probability distribution on Temperature, given various x,,...,x,, inputs.

— Correlations (i.e., trends) of Temperature vs. X,...,X.
02/23/Mean(T), StdDev(T), Probability(T > T _...) 36

no

The eyeball norm is dead. Long live UQ!

Well, that is the day we are hoping for.

36

Component
Identification/
Ranking

02/23/12

Complex problems require a
hierarchical approach to validation.

e % Prediction of Full-System

T N\ Response Quantity of Interest X . X
Scaling Arguments VAN +———— ___\alidation of “full-physics”
for Use with Full Size / y, Fizyaiem systems is usually rare.

Systems / Full System \Vafﬂdaﬂon Y y

‘ Rare

£ -\
vl ScalelE s Valld_atlgn of coupled-
" Fewer [ETs Coupled physics” systems is often
Calibration/ complex and challenging.

Validation
Multiphysics Components

and Subsystems
Fewer Integral Effects Tests

Validation of “single-physics”

C t i
Single Pl ysics Components Coerxgroaziz/ SyStemS is the n_.IOSt
Many Separaic Sfacts Tests Validation COMMON anaIySIS.

et al., Consortium for Advanced Simulation of Light Water Reactors (CASL), 2010. 37

Verification is orthogonal to UQ and SA

Inputs: parameters to governing * COde Verlflcatlon leen

equations, algorithms, and discrete inputs com pute exact
equations error to examine code.
* UQ/SA: Given code
I\ /I (“model”) compute

| outputs to examine
Governing Simulation . cpe .
‘ S ’Q uncertainty, sensitivity.
Discrete
Equations %
Approximate
Solutions Alternative statement: UQ/SA and
Code Verification are

0Fr2sre complementary. 38

QOutputs: quantities of
interest

Governing equations includes BCs, ICs, and auxiliary models
(material models)

UQ/SA does not say anything about how good your black box is -
the black box is an input to UQ and SA.

Similarly, code verification does not say anything about different
values of the inputs.

UQ, SA originated in fields where models were cheap, no deep
knowledge embedded in them, very often empirical.

Applying UQ, SA to complex software systems is a new
application area, and perhaps more thought is needed to identify
the implications

In V&V, | say the model is the governing equations.

In UQ, SA, the model is the approximate solutions. More on the
next slide.

The fundamental tension: find out as much as you can, but
recognize you can’t eliminate all risk
If we could validate here, we

f wouldn’t need simulations.

- % Prediction of Full-System
/N

Response Quantity of Interest

Scaling Arguments / \)
for Use with Full Size / Full System |S there any eVIdence for the
Systems Validation

/ Full System y possibility of a catastrophic

failure?

Propagate

Uncertainties Scaled Prototypes

Fewer IETs Coupled

Assessments tell where to
alibration/
Validbios focus resources to reduce
Component

Identification/ Multiphysics Components uncertainties.
and Subsystems

Ranking
Fewer Integral Effects Tests
We can often make
- S .)
SO D e C e enents Compansat pred!ctlons with confidence
Many Seprate Effects Tests vaication (but it takes a lot more work
than you might think.)
02/23/12 39
Image: Kothe et al., Consortium for Advanced Simulation of 39

ors (CASL) proposal, 2010.

Tim Trucano’s observations on V&V...

* Key V&V themes have not changed “for decades”:

- “Codes are not solutions, people are solutions.”

- “Credibility of computational simulations
for defined applications is evolutionary...”

- “... at worst, credibility is non-existent in specific applications9!d Ideas In V&V

- “Single calculations will never be ‘the right answer’ for hard
problems.” optmiaton 13 Unewy ricton 0141

— “Real V&V and real UQ are a lot of work.” August, 2011

rrrrrrrrr

* Trucano’s four insights on V&V:
1. “V&V — pay me now or pay me later.”
2. “Journal editorial policies and practices must change.”
3. “Ask ‘What’s good enough?’”
4. “Saying you don’t need verification is like saying you don’t need oxygen.”

02/23/12 40

1. “Pay me now or pay me later”

 High consequence computational science is ABOUT
ANSWERS, NOT ABOUT INSIGHT (with due respect
to George Box).

1. Journal editorial policies and practices must change

e The iron law that journals don’t publish V&V is an
empirical fact.

* Starting the “Journal of V&V” is not the solution.
1. Ask “What’s good enough?”

 Is the answer: “When | run out of energy and/or
money?”
1. “Saying you don’'t need verification is like saying you don’t
need oxygen.”
e Standard argument:

1.Show plot in which “calculation” and
“experiment” appear to “agree.”

2. Logic: the calc/expt agreement could not
possibly be that “good” iif there were
algorithm/code/numerical errors.

3. Deduction: “l don’t need verification.”

* This is an example of proof by
intimidation/”vigorous hand-waving”/”eminent
authoritv”/”reduction to the wronag problem”/etc.

40

Final ideas: what should we provide.... h

A software infrastructure to support testing...
* Ability to run a large number of simulations repeatedly
* Ability to compare results with a baseline
* Ability to report pass/diff/fail

* Run on platforms of interest at regular intervals

02/23/12 41

Homework h

* Describe on the blog:

- which kind of testing procedure you adopted so far in your
code

— Which kind verification are you plan to use ?

- Which kind of validation are you plan to use?

02/23/12 42

