
An Outlook of High Performance
Computing Infrastructures
for Scientific Computing

[This draft has mainly been extracted from the PhD Thesis of Amjad Ali at Center for Advanced

Studies in Pure and Applied Mathematics (CASPAM), Bahauddin Zakariya University, Multan,

Pakitsan 60800. (amjadali@bzu.edu.pk)]

In natural sciences, two conventional ways of carrying out studies and reserach

are: theoretical and experimental. The first approach is about theoratical treatmment

possibly dealing with the mathematical models of the concerning physical phenomena

and analytical solutions. The other approach is to perform physical experiments to

carry out studies. This approach is directly favourable for developing the products in

engineering. The theoretical branch, although very rich in concepts, has been able to

develop only a few analytical methods applicable to rather simple problems. On the

other hand the experimental branch involves heavy costs and specific arrangements.

These shortcomings with the two approaches motivated the scientists to look around

for a third or complementary choice, i.e., the use of numerical simulations in

science and engineering. The numerical solution of scientific problems, by its very

nature, requires high computational power. As the world has been continuously en-

joying substantial growth in computer technologies during the past three decades,

the numerical approach appeared to be more and more pragmatic. This constituted

a complete new branch in each field of science, often termed as Computational

Science, that is about using numerical methods for solving the mathematical formu-

lations of the science problems. Developments in computational sciences constituted

a new discipline, namely the Scientific Computing, that has emerged with the

spirit of obtaining qualitative predictions through simulations in ‘virtual labora-

tories’ (i.e., the computers) for all areas of science and engineering. The scientific

computing, due to its nature, exists at the overlapping region of the three disciplines,

mathematical modeling, numerical mathematics and computer science, as shown in

Fig. (1). Thus, it requires multi-disciplinary expertise for obtaining eective and

industrious outcomes through it. An excellent elaboration of this interdisciplinary

blend is given by Bungartz et al. [1], shown in Fig. (2). The main enabling factors

1

Figure 1: "Definition of scientific computing as the intersection of numerical mathematics, computer

science, and modeling" (taken from the Book "Parallel Scientific Computing in C++ and MPI" by

Karniadakis and Kirby)

Figure 2: "The simulation pipeline and its stages, involving input from mathematics, informatics,

and the respective field of application" (taken from Ref. [1] by Bungartz et al.)

for so impressive advancements in scientific computing during the past three decades

are enormous growth in computing capabilities, steep decline in computing cost and

development of more and more ecient algorithms [2]. It is quite interesting to

note that these factors mutually serve as stimulating agents for one another in their

enhancement.

A conventional methodolgy in scientific computing is to implement the solution

algorithm on computers using some appropriate programming environments and li-

braries, and executed on some workstation or parallel computer. Some necessary

steps, like for example collecting input data in some special format, could be per-

formed in a separate pre-processing phase. The main computational procedure is

2

implemented in the principal software application program/code and on execution it

produces output data files that might grow upto Megabytes to Gigabytes in their size.

Finally in the last step, the post-processing phase, useful conclusions are drawn from

the output files by making use of appropriate graphical/visualization tools. Note

that software testing (code verification and model validation) and maintenance

are two important aspects in scientific computing to be considered with due atten-

tion, especially for the large scale open-source applications which usually evolve for

advancement in the science through a community eort. These considerations are

not about the execution performance or speed of the code as such but they turn out

to be key factors in getting productive use of the scientific application in its life cycle.

Computers have become indispensable for numerical simulations of practical prob-

lems in science and engineering. In fact, a key factor for enormous success in com-

putational sciences has been the rapid developments in HPC capabilities during the

past two decades. Thus, realization of the essential cooperation between the com-

puter science and numerical simulation is quite important [1]. Alongwith developing

a hierarchy of ecient algorithms for the scientific applications, an important need is

to implement the complete application in some high performance computing (HPC)

environment to obtain the solution in a reasonable time frame. The most commonly

used and recognized form of obtaining a HPC based solution is to perform paral-

lelization of the application, so that a number of processors work together on dier-

ent parts of the problem or domain to reduce the overall time required to solve the

problem. From a hardware perspective, HPC may be realized on a variety of distrib-

uted memory architectures, shared memory architectures and hybrid architectures.

From a software perspective, HPC relies on utilizing ecient compilers, mathemati-

cal kernels and sophisticated parallelization libraries for an underlying architecture.

Further, tuning the application with reference to an underlying architecture may also

result into very fast solutions.

A variety of industrial innovations in computer technologies and methodologies

for high performance computing is getting introduced year by year. These technolo-

gies motivate the computational scientists to develop innovative solutions for even

faster and detailed analyses and simulations. The present manuscript overviews the

spectrum of high performance computing (HPC) technologies ranging from a modern

3

uniprocessor to shared memory (multicore) machines, to distributed memory clusters,

to hybrid parallel systems. It also lists a variety of high performance parallel pro-

gramming paradigms and methodologies for the said parallel computer architectures.

Some basic parallel performance metrics are also presented.

0.1 Modern Microprocessor Based Computer Systems

The basic physical organization of a modern computer, based on the von Neumann

architecture model, comprises five units, namely Memory, Control, Arithmetic-&-

Logic, Input and Output. The central processing unit (CPU) comprises control and

arithmetic-&-logic units. The functioning of a computer is precisely the execution of

instructions to process data by its CPU. Instructions are the primitive operations

that the CPU may execute, such as moving the contents of a memory location (called

as register) to another memory location within the CPU, or adding the contents

of two CPU registers. Control unit fetches the data/instruction from the system

memory or main memory, sometimes also referred to as random access memory

(RAM). The data is then processed by the Arithmetic-&-Logic unit, sequentially,

according to the instructions decoded by the control unit. Storing both the data

and instructions in the single main memory unit is an essential feature of the von-

Neumann architecture. Input and Output units provide interface between computer

and the human.

Not only the CPU, the memory system of a computer also play a crucial rule for

overall computer performance in performing the computations. The memory system

of a modern computer is complicated one. A number of smaller and faster memory

units, called cache memories or simply caches, are placed between the CPU and the

main memory. These caches, existing at a number of levels, form a memory hierarchy

in which access time and size increases as moved away from a level that is nearer to

the CPU to a level that is farther. The idea of a cache memory is to bring only some

part of the program data needed currently from main memory into the cache to speed

up the data access by the CPU. The memory hierarchy (combining smaller and faster

caches with larger, slower and cheaper main memory) behaves most of the time like

a fast and large memory. This is mainly due to fact that the caches are to exploit

the feature of locality of memory references, also called principle of locality, which is

4

often exhibited by the computer programs. Common types of locality of reference

include spatial locality (local in space) and temporal locality (local in time). Spatial

locality of reference occurs when a program accesses data that is stored contiguously

(for example, elements of an array) within short period of time. Caches are used to

exploit this feature of spatial locality by pre-fetching from the main memory some

data contiguous to the requested one, into a cache. Temporal locality of reference

occurs when a program accesses a used data item again after a short period of time

(for example, in a loop). Caches are used to exploit this feature of temporal locality

by retaining recently used data into a cache for some period of time. Note that the

locality of reference is a property of computer programs but is exploited in memory

system design through the caches. This, definitely, indicates that during coding a

programmer should take care to develop the code so as to enhance both type of

localities of reference for ecient cache utilization. This could be achieved by coding

in a way that data is accessed in a sequential/contiguous fashion and, if required to

be reused, is accessed again soon as much as possible.

A modern CPU (microprocessor) executes (at least) one instruction per clock cy-

cle. Each dierent type of CPU architecture has its unique set of instructions, called

its instruction set architecture (ISA). The instruction set architecture of a computer

can be thought of the language which the computer can understand. Based on the

type of ISA, two important classes of modern (microprocessor based) computer ar-

chitectures are: CISC (Complex Instruction Set Computer) architecture and RISC

(Reduced Instruction Set Computer) architecture. The basic CISC architecture is

essentially the von Neumann architecture in the sense of storing both instruction and

data inside a common memory unit. On the other hand, the basic RISC architec-

ture has two entirely separate memory spaces for instructions and data, which is the

feature that was introduced in Harvard architecture to overcome the bottleneck in

von Neumann architecture due to data-instruction shared paths between CPU and

the memory. CISC philosophy is that the ISA has a large number of instructions

(and addressing modes, as well) with varying number of required clock cycles and

execution time. Also certain instructions can perform multiple primitive operations.

RISC philosophy is that the ISA has a small number of primitive instructions for

ease in hardware manufacturing and thus the complicated operations are performed,

5

at program level, by combining simpler ones. Due to its very nature, a RISC ar-

chitecture is usually experienced to be more faster and ecient than a comparable

CISC architecture. However, due to continuing quest for enhancement and flexibility,

today a CPU executing an ISA based on CISC may exhibits certain characteristics of

RICS and vice versa. Thus, the features of CISC and RISC architectures have been

morphing with each other. Classic CISC architecture examples include VAX (by

DEC), PDP-11 (by DEC), Motorola 68000 (by Freescale/Motorola) and x86 (mainly

by Intel). Modern CISC architecture, x86-64, based computers like Pentium (by

Intel) and Athlon (by AMD) basically evolved from the classic CISC architecture

x86, but they exhibit several RISC features. Currently, Xeon (by Intel) and Opteron

(by AMD) are the two quite prominent market icons based on x86-64 architecture.

Famous RISC architecture examples include MIPS (by MIPS Technologies), Power

(mainly by IBM), SPARC (mainly by SUN/Oracle), Alpha (by DEC) and ARM for

embedded systems (by ARM Ltd.).

Today, Intel and AMD are the two major vendors in the microprocessor industry,

each with their own line of CPU architectures. The x86-64 CPUs from Intel and

AMD, basically emerged as the CISC architecture, now incorporate a number of

RISC features, especially to provide for Instructions Level Parallelism - ILP (details

later on). Interestingly, today the microprocessors (from Intel and AMD) implement

the feature of separate memory space for data and instructions for Level-1 caches (at

least).

Another main specialty of a modern CPU is that a number of CPU cores are fused

together on a single chip/die with a common integrated memory controller for all the

cores. Initially dualcore CPU chips were introduced around the year 2005 but, as of

2012, 12/16-core CPU chips are commonly available in the market, although the price

might get manifold with linear increase in the number of cores per chip. Moreover,

getting the best performance out of larger number of cores in a single CPU is currently

a challenging task, mainly due to memory bandwidth limitations. Mutlicore CPUs

provide for more clock cycles by the summing the clock cycles contributed by each of

its cores. Thus keeping the well-known Moore’s law eective, today, to some extent.

Infact, they provide for tackling the issues of high power requirements and heat

dissipation realized in the case when all the cores are there in separate CPU-chips,

6

instead of being part of a single CPU-chip [3]. Increment in the clock frequency of

a single CPU core (silicon based) is virtually no more feasible due to physical and

practical obstacles. Multicore technology is the posed and accepted solution to this

limitation.

Another sophisticated architectural innovation in a large class of modern CPUs

is the multithreading facility per CPU core. A physical core act as to provide more

than one (usually two) logical processors that might be benefited by the application

in hand. The common realizations of this concept include hyperthreading, symmetric

multithreading (SMT) and chip multithreading (CMT). A concise and beautiful in-

troduction to this topic, also to the overall features of modern processors is given by

Hager and Wellein ([4], 136). Implications of several of the architectural features of

modern processors (especially the multicore, multithreading and ILP) are discussed

in the coming sections.

0.2 Computing Shift from Serial to Parallel

Traditional serial computation refers to the execution of program instructions se-

quentially, one after the other, on a single processor. The ever increasing demand of

processing power for solving computational problems has been compelling for inno-

vative ways of responding to the need, beyond the level of conventional serial com-

puting. High Performance Computing (HPC) is the field that is about

the quest of developing and implementing innovative methodologies and technolo-

gies, for both the hardware and software, to respond the ever increasing demand

of processing capability. The most prominent way to fulfill the high performance

computing needs is considered to be Parallel Computing. Parallel computing

refers to solve a computational problem by working on dierent parts of the problem

simultaneously by multiple processing units. The processing units could be proces-

sors or parts of an individual processor. The dierent parts of the problem could be

dierent tasks/operations, or the same task on dierent pieces of the problem’s data.

Fig. (3), taken from [5], elaborates the basic dierence between serial and parallel

executions.

Parallel computing not only provides for the concurrency, it might also provide

the capability to solve large problems that were somehow impossible to be solve by

7

(a) Serial execution on a single processing unit

(b) Parallel execution on multiple processing units

Figure 3: The basic concept of serial and parallel execution of the solution program. (Figures taken

from Barney)

8

serial computing approach. A favouable fact to parallel computing is worth to men-

tion that the programmers/scientists can recognize or define some one or other form

of potential of parallelism in the real world problems to solve them using the paral-

lel approach [5]. Previously, a variety of ‘high-end’ parallel computing architectures

(both distributed and shared memory systems) were the only choices as the paral-

lel computers. They were very costly and owned by rich organizations/institutions.

But with the advent of compute clusters (which could be composed by interconnect-

ing ordinary microprocessor based personal computers) and multicore CPUs as the

cost eective parallel computers, achieving high performance parallel computing has

come down to an individual user’s desktop level. These systems are composed of

mass-market commodity o-the-shelf (M2COTS) hardware components and may be

reerred to as commodity parallel systems. An important key point to remem-

ber in this regard is that all neccessitates the user or programmer to opt some apt

methodology to take advantage of these innovations and modern trends. Making use

of agglomeration of physically independent or isolated computing resources (could be

referred to as explicit parallelism) is not the only form of parallel computing. Sev-

eral hardware level architectural innovations, like instruction level parallelism (ILP),

within a single processing core have given rise to, so called, implicit parallelism. Pre-

cisely saying, today the parallelism could be categorized as Implicit Parallelism and

Explicit Parallelism [6], from a programmer’s perspective. The next two sections are

devoted to these two kinds of parallelism.

0.3 Implicit Parallelism

Implicit parallelism refers to the two peculiarities. One is the instruction level par-

allelism (ILP) that is implemented at the micro-architecture hardware level. The

second is about use of some automatic parallelization standard/compiler. Obviously,

this categorization is from programmer’s view point in the sense that the application

programmer has not to do ’much’ to get benefit from it. The two forms of implicit

parallelism are further explored below.

9

0.3.1 Instruction Level Parallelism (ILP)

ILP is a set of techniques for executing multiple instructions simultaneously within

the same CPU core, through keeping dierent functional units/stages busy for dier-

ent types/parts of instructions, or providing multiple functional units for the same

operation. To elaborate, following are the three kinds of ILP:

(1) Pipelining/Superpipelining: For pipelining, an instruction is considered

to be consisting of a number of functional stages. While an instruction completes

a stage and the respective functional unit becomes free than this functional unit

can be used to perform the same stage of another similar instruction with dierent

data. This is much like an assembly line. A pipeline provides for overlapping the

execution of multiple instructions. This might provide a throughput near to one in-

struction per clock cycle. Superpipelining is achieved by dividing each of the pipeline

stages that need larger amount of execution time (e.g., the stages concerned with

cache/memory access) into a number of stages to obtain fine-grained pipeline stages

that require nearly equal amount of execution time. The larger number of stages

allows larger number of instructions to be executed in parallel [7]. As of the year

2011, microprocessors commonly have 10 to 35-stage pipelines ([4], pp. 10).

(2) Superscalarity: Independent instructions requiring dierent functional units

can be issued/executed simultaneously through dynamic instruction scheduling by

the hardware at run-time (for example, simultaneous execution of add and multiply

instructions, and load instructions on dierent functional units). This facilitates for

increasing the CPU throughput by executing more than one instruction per CPU

cycle ([4], pp. 1314). The modern microprocessors further enhance the super-

scalarity by incorporating out-of-order execution feature, which dynamically decides

the need and possibility of scheduling an instruction in a way that violates the in-

struction fetch order [7]. As of the year 2011, microprocessors are commonly 2 to

8-way superscalar.

(3) Vectorization: Multiple pieces of vector data (like elements of a linear ar-

ray) are loaded into special registers and the same instruction is performed on all

the pieces, simultaneously. This concept is also referred to as S IMD (Single instruc-

tion, multiple data). The vectorization or SIMD feature in modern, so called ‘scalar ’

10

processors is the renaissance of the concept at a relatively smaller level, which was

originally used in ‘vector ’ processors in 70s and 80s. The vector processors virtually

‘evaded’ from the market since 90s, despite of their nature more closer to computa-

tional science. As of the year 2011, microprocessors commonly have vector—registers

of size up to 256 bits. Thus, two registers each having eight elements of an operand

array of 32-bit integers can be operated on simultaneously (performing 8 operations

in parallel) to produce the result that is stored into a third vector register. The in-

struction set architectures of a modern microprocessors include extensions for SIMD

operations. Example of these extension include SSE and AVX from Intel, 3dNow!

from AMD and VIS from Sun/Oracle ([8], pp. 8).

Note that the degree of ILP heavily depends on how the program instructions

depends on each other. Clearly, more the independent instructions, more would be

the chances for ILP. A dependence aects the way the program components (state-

ments/instructions, loop iterations, etc.) may be executed ignoring the sequence of

events specified by the programmer without changing the output. Program compo-

nents that are not dependent on each other can be executed in parallel and have

greater probability to qualify for ILP. Common types of dependencies include data

dependence, name dependence and control dependence. The data dependence or true

dependence refers to the case when a variable content updated by an instruction is

used by another instruction following it (Read-After-Write case). The name depen-

dence could be either an anti dependence, or output dependence. Anti dependence

refers to the case when a variable content is used by an instruction and then the vari-

able content is updated in another instruction following it (Write-After-Read case).

Output dependence refers to the case when a variable content is updated by an in-

struction and then the variable content is updated by another instruction following

it (Write-After-Write case). The true dependences can not be eliminated, as it is

necessary for the algorithm. A name dependence, on the other hand, can removed

by variable/register renaming technique (see [3], pp. 71). Control dependence af-

fects the flow of control in a program from instruction to instruction through the

existence of branches (conditions like if/else, switch), function calls, etc. Modern

processors also include branch predictor and speculative execution feature to allow

for more parallelism beyond the limitation of flow of control [7]. Dependencies in

11

loops, specially the loop-carried dependency (where the ith iteration of the loop re-

quires some value updated in (i-1)th iteration), more seriously aect the ILP and, in

general, the implicit parallelism. The modern compilers might automatically assume

some code restructuring, while generating the object code, for enhancing the degree

of ILP. The compilers perform this automatic code optimization according to the

level of “privilege” given to the compiler by the programmer.

0.3.2 Automatic Parallelization

This form of implicit parallelism could be achieved by using features available in a

parallelization standard/compiler. Fully automatic parallelization has not achieved

the level of maturity that a wide class of problems could be benefited from it. So this is

not focused here. However, programmer directed form of automatic parallelization has

been experienced to be useful for a large number of cases. An important peculiarity

in this regards is the shared memory multithreading that can be achieved by using

“only” the compiler directives of a standard like OpenMP and Cilk Plus (supported

by the respective compiler) or by using a parallel language like UPC, Chapel, Fortress,

X10, Co-Array Fortran, HPF, ZPL, Charm++ including recent contributions, e.g.,

PetaBricks and Julia. Eorts to develop automatic parallelization models is ever

ongoing, like for example, SPC3PM [9].

Note that the underlying platform should itself need to be a parallel computer

for getting benefits of the parallelization models. It should be a personal computer

having multicore and/or multithreaded CPUs, at least, if not more sophisticated one.

The automatic parallelization might be attributed to implicit parallelism because the

respective model or standard takes care of how the parallelism is actually achieved

and the programmer has not to do much, expect for using compiler directives to point

out the parallelizable code segments. Code segments that avoid strict dependencies

and involve patterns favourable to the automatic parallelization have more chances

of getting automatically parallelized.

0.4 Explicit Parallelism

Explicit parallelism is characterized by the fact that the programmer is responsi-

ble for, (1) taking care of subdividing the problem into a number of sub-problems

12

(with respect to data or tasks) for simultaneous execution on a number of process-

ing elements, and (2) managing the coordination and synchronization among the

sub-problems. The major forms of explicit parallelism are explained below.

0.4.1 Shared Memory Parallelism

From a hardware perspective, a shared memory parallel architecture is a computer

that has a common physical memory accessible to a number of physical processors.

The two types of shared memory architectures are Uniform Memory Access (UMA)

and Non-Uniform Memory Access (NUMA), as shown in Fig. (4a-b), taken from Bar-

ney [5]. Today the most common form of an UMA architecture is the Symmetric

Multiprocessor (SMP) machine, which consists of multiple identical processors

with equal level of access and access time to the shared memory. While the most

common form of a NUMA architecture is the machine made by inter-linking a num-

ber of SMPs. It is characterized by the fact that the access time to dierent memory

locations might vary for a processor.

From a programmer’s perspective, the most common form of shared memory par-

allelism is themultithreading programming model. The parallel application

might involve multiple execution threads that share a common logical address space.

Standard implementations of threads include POSIX Threads, Intel Threading Build-

ing Blocks, Cilk Plus and OpenMP. Note that, unlike OpenMP, POSIX threads are

library based and parallelization with POSIX Threads is explicitly performed by the

programmer. The major advantages of shared memory programming are its simplic-

ity and uniformity because of common global address space. On the other hand,

due to the same reasons, the shared memory systems are less scalable; data trac

congestion occur when higher number of processors share the same path to access

the global memory. Moreover, the cost of building shared memory system with ever

increasing number of processors grows exponentially.

Emergence and so rapid advancements inmulticore (now also referred to asmany-

core) CPUs have given substantial acceptance of these as a new shared memory

parallel computing platform. These CPUs oer a parallel computing platform at

personal computer (PC) and Laptop levels. As of the year 2011, PCs with 1-4 CPU

13

(a) Shared memory architecture UMA

(b) Shared memory architecture NUMA

(c) Distributed memory architecture

Figure 4: The basic forms parallel computer architectures. (Figures taken from Barney)

14

sockets, with each CPU chip having up to 16-cores are available in the commodity

market, thus up to a total of 64 CPU cores could be available in a single system. Each

of the multicore CPUs, itself, may be regarded as a lower-cost version of UMA-SMP

and, thus, the multi-socket PC (having more than one CPU chips, each with its own

integrated memory controller) is a NUMA architecture. However, getting respective

parallel performance from such machines depends strongly on the algorithm and the

program design. Infact, multicore CPUs are appearing to be the one on which the

biggest supercomputing machines are relying by considering them as building blocks.

However, in such machines suciently fast memory hierarchies, interconnect fabrics

and I/O systems would be necessary for acceptable parallel eciencies.

Recently a more advanced and extremely fast, but under-developing and tricky,

way of computing is realized that make use of graphical processing units (GPUs)

for explicit parallel computations. With a GPU installed in a computer 10 time

faster speed can be achieved, at least in theory, as of the year 2011. To make use

of GPUs, currently CUDA (for GPUs manufactured by nVidia) and OpenCL are the

two programming models for general-purpose graphical processing units (GPGPU)

computing.

0.4.2 Distributed Memory Parallelism

From a hardware perspective, a distributed memory parallel architecture is a com-

puter that has a number physical processors each with its own local resources and

separate memory space and requiring an interconnection network for mutual com-

munication for accessing memory of other processors. A basic block diagram of this

architecture is shown in Fig. (4c), taken from [5].

From a programming perspective, the most suitable form of distributed shared

memory parallelism is multiprocessing. Multiple processes, each allocated with

a subproblem, are mapped to dierent processors (cores) to solve their respective

subproblems. The inter-process communication (for mutual coordination and syn-

chronization) is performed using the message passing model. According to

which the processes (each having a separate logical memory space) send and receive

message for data sharing. This is done in a cooperative fashion such that any message

SEND call issued by a process must has a matching message RECEIVE call issued by

15

the process that is supposed to receive the message. A message passing implementa-

tion is a library (of subroutines for a variety communication operations) that work in

conjunction with the usual C/C++/Fortran compilers. Although there have been a

number of library-implementations of message passing model, but todayMessage

Passing Interface (MPI) library is the most widely used implementation.

MPI library includes a variety of routines for both point-to-point and collective com-

munications. The communication instance involving one sender and one receiver is

referred to as point-to-point communication. This is in contrast to the collective com-

munication which could be one-to-all, all-to-one, or all-to-all. MPI has emerged as

a de-facto standard for portable and scalable parallel programming for distributed

memory parallel architectures. Several free and commercial MPI implementations

are available. These implementations include both general and architecture/vendor

specific. Well-known examples of MPI implementations include

• OpenMPI (by Indiana University, open source)

• MPICH andMPICH2 (by Argonne National Lab, open source)

• MVAPICH andMVAPICH2 (by Ohio State University, free)

• Platform MPI (by Platform Computing, commercial)

• Intel MPI (by Intel, commercial)

• MSMPI (by Microsoft, commercial, for use on MS HPC Server 2008 OS)

• MPJ Express (by several including NUSTPakistan, Java based [10]).

The advantages and disadvantages associated with distributed memory paral-

lelism are in contrast to those of shared memory parallelism. Distributed memory

systems are highly scalable and are less costly. Even, the mass market commodity

o-the-shelf (M2COTS) computer components can be used to build a cost eective

system, usually called clusters. On the other hand, programming for the dis-

tributed systems is more challenging and intensive to take care of splitting of data

structures across the separate memory spaces of the parallel processes and for co-

operative inter-process communication. In principle, the distributed memory MPI

applications can execute on any shared memory architecture, as well. For example,

24 MPI processes can be executed in parallel on a 24-core machine (1 MPI process

per processing core). Even for the case of shared memory space, each of the MPI

process consider its memory space isolated from that of any other process.

16

0.4.3 Hybrid Distributed-Shared Memory Parallelism

Hybrid parallel architecture refers to the system consisting of a number of ma-

chines/PCs with distributed memory interconnected via a network, where each of

the machine is a shared memory computer (like SMP) itself, as shown in Fig. (5a),

taken from [5]. Thus, a hybrid distributed-shared memory computer is built by inter-

connecting a number of SMPmachines via a network. This looks practicable and easy

to understand as, today, a multi-socket machine with each socket having a multicore

CPU is an SMP machine. With the advent of GPGPU computing, a new layer of

computing might be added in the hybrid parallel scenario. That is, each of multiple

SMP machines is also equipped with one or more GPUs, as shown in Fig. (5b), taken

from [5]. The high end supercomputing cluster computers follow a hybrid memory

architecture and seem to be prevailing at the top positions in the predictable future.

There exists a number of useful hybrid parallel programming paradigms that could

be investigated for numerical simulations. MPI with OpenMP is the one among those.

The idea is to use MPI for communication across the interconnected machines and use

OpenMP within a single multicore machine, as shown in Fig. (5c), taken from [5]. In

general, a hybrid programming approach might use more than one implementation,

selecting at most one implementation out of each of the three architectural levels

of parallelism: (1) MPI, (2) OpenMP/p-threads and (3) CUDA/OpenCL. A hybrid

programming approach on an appropriate parallel architecture might (or might not)

utilize the computational resource more eciently and eectively than with any one

of the participating parallel programming approach.

17

(a) Hybrid distributed-shared memory architecture

(b) GPU equiped hybrid distributed-shared memory architecture

(c) A hybrid programming model with MPI + OpenMP

Figure 5: Hybrid parallelism. (Figures taken from Barney)

18

0.5 Cluster Computing

As discussed that, a cluster is composed by interconnection of individual PCs using

a interconnection network (simply called interconnect) such that the interconnected

machines acts like a single computer. Common cluster types (with respect to their

usage) include compute clusters, high-availability clusters and load-balancing clus-

ters. As the present work is concerned solely with the compute clusters, so the word

cluster is used to refer to the compute cluster only. The compute cluster is proven

to be very cost eective distributed memory parallel architecture. More precisely,

today, the cluster is a hybrid memory parallel architecture given that each of the in-

terconnected machines is an SMP (being a multi-socket and/or multicore machine).

The interconnected machines that constitute the cluster are called as nodes. Two

necessary types of cluster nodes are compute nodes, where the parallel computa-

tions are performed, and head node, which is responsible for system management,

handling of user login and job submissions.

In a typical scenario, cluster users log-on to the front-end node of the cluster via

public Internet and compile their programs using compilers/environments of their

choice (from among the available ones) on the front-end node and submit their batch

jobs for execution. The front-end node manages some queues of user requests and

schedules the submitted jobs to execute them on the compute node/s according to

some pre-specified priority mechanisms using a job scheduling software, also called

batch scheduler. Examples of job scheduling software include

• Portable Batch System (PBS)

• Oracle/Sun Grid Engine (SGE)

• Platform LSF (Load Sharing Facility)

• MAUI Cluster Scheduler

• MOAB Cluster Suite

• TORQUE Resource Manager

• Simple Linux Utility for Resource Management (SLURM).

In complement to the batch job submission style, a cluster may have the facility of

interactive job submission style, usually on some specified nodes for debugging, test-

ing and short jobs. A cluster may also have some scalable distributedmonitoring sys-

19

tem for statuses of resources in the cluster. Examples of monitoring software include

Ganglia, MOAB Cluster Suite etc. For big clusters, with several hundreds/thousands

of nodes, the responsibilities of the head node are distributed among a dierent type

of nodes:

• one administration/management node

• one or more Login nodes

• one or more Gateway or I/O nodes (for ecient handling of data bulks).

The cluster interconnect could be as simple as Fast Ethernet (of 100Mbps

of bandwidth) and Gigabit Ethernet (of 1000Mbps of bandwidth). The cluster

may also be equipped with a specialized interconnect technology (of high band-

width and/or low latency), like 10-Gigabit Ethernet, Infiniband, Myrinet or

Quadrics. If a specialized network is available in the cluster then it is configured to

be used for inter-process MPI communications among the parallel processes mapped

onto dierent compute nodes. In such a case, the Ethernet network is used for sys-

tem/job management purposes. The two major characteristics of an interconnect are

bandwidth and latency. Bandwidth refers to data transfer rate i.e., quantity of data

transferred per unit of time, usually expressed in Mbps (Mega bits per second). La-

tency refers to transfer time for minimal (zero byte) data between two points, usually

expressed in microseconds.

The clusters, as the hybrid memory architectures, oer the most cost eective

solution to fulfill the need of high performance parallel computing capabilities for

numerical simulations. Because of their eectiveness, cost-eectiveness and scalabil-

ity, 410 (82%) supercomputing machines out of the world’s top 500 known super-

computing machines as of November 2011 are clusters, as announced by the TOP500

project [11]. However, it is worth to mention that clusters compliment rather than

compete with the more sophisticated parallel computing architectures, usually called

Massively Parallel Processing (MPP) machines, which are only 89 (17.8%)

in number out of the total of top 500 machines, as of November 2011. As an evidence

of this fact, note that the total number of CPU cores in 410 clusters is 5804063 and

that of in 89 MPPs is 3378812. Similarly the overall total maximum speed attained

by 411 clusters is 50192818 GFLOPS and that of by 89 MPPs is 23823974 GFLOPS.

20

This means that, on average, each cluster has 14156 CPU cores and 122421 GFLOPs

maximum speed, whereas an MPP has 37964 CPU cores and 267685 GFLOPs max-

imum speed. Thus, on the TOP500 list [11], an MPP has 2.68 times more number

of CPU cores and 2.18 times more speed than those of a cluster, on average.

Moreover, the dominant choices of the CPUs are the 64-bit architecture (x86-

64) based Xeon (from Intel) and Opteron (from AMD) for the high performance

computing machines. This is evident from the fact that around 90% of all the CPUs

in the top 500 machines belong to these two series of CPUs [11].

As the use of clusters is becoming so economical and widespread that very small

clusters within a single desktop chassis are also appearing in the commodity market,

for example the Limulus (LInux MULti-core Unified Supercomputer) project [12],

that can work like very big clusters (obviously at small scale). Interestingly, a

low-cost cluster according to the Limulus Project Design (having four nodes with

four quadcore processors of desktop category) has been demonstrated to achieve 200

GFLOPS [13]. Such a 16-core cluster could be outperform a 16-core SMP machine

that have all of its cores on the same system board (irrespective of the number of sock-

ets), especially for the scientific applications (like sparse linear solvers, for example)

requiring high memory bandwidth [14—16].

0.6 Grid and Cloud Computing

Parallel applications, based on distributed memory models, can be categorized as

either loosely coupled, or tightly coupled applications. Loosely couple applications,

sometimes also referred to as embarrassingly parallel applications, require very few or

virtually no communication among the parallel processes. Therefore, these processes

might be mapped to geographically dispersed processing units, inter-connected using

some specified networking technology. Such an agglomeration of remote comput-

ers inter-connected, possibly on the Internet, with certain others attributes as well,

is termed as grid. The embarrassingly parallel applications like Monte-Carlo simu-

lations are the best candidate for exploiting the maximum processing potential of

grids. The tightly coupled applications, like the PDEs solvers, which require very

frequent inter-process communications can be executed more eciently on the paral-

lel computers which have all of its processing units either inter-connected using some

21

local network topology (e.g., clusters, MPPs, etc.), or remain within a box (like SMP

machines).

Grids not only provide for the sharing of remote ‘computational resources’ but

they enable certain other types of resource sharing as well. Further details on grid

computing can be found in [17] and [18]. Note that another type of computing,

namely the cloud computing is also emerging, in which not only the high performance

computing but mostly a vast variety of other forms of computing are provided through

the Internet as “services”, instead of “products” [19]. Interestingly the services on

clouds are provided as metered facilities. This has given rise to the debate whether

an in-house HPC facility is preferable or the HPC service from a commercial cloud

for medium scale applications. The examples of HPC services on clouds range from

a single core computer to a cluster of a few hundred CPU cores, to a cluster of

GPUs [20].

0.7 Developing Ecient Parallel Programs

The operating system (OS) of choice for most of the HPC community is Linux.

91.4% of the top 500 supercomputing machines are based on Linux [11]. The par-

allel computers are equipped with a number of modern compilers of C, C++ and

FORTRAN languages, at least. Intel, PGI, Pathscale, Absoft and GNU are some

well-known compiler providers. For shared memory programming, modern compil-

ers include OpenMP implementation. Also the POSIX thread library could be used.

Cilk Plus is a new standard, included with C/C++ compilers from Intel, for directive

based parallelization. For distributed memory programming an MPI implementation

is installed on the parallel computer using a set of C,C++ and FORTRAN compil-

ers. A variety of performance tools and libraries can also be considered. Intel’s Math

Kernel Library (MKL) and AMD’s Core Math Library are among the libraries that

provide highly ecient subroutines for useful mathematical operation.

During the program development, an appropriate code debugging software

tool might be used to find out the errors to obtain the correct final results from the

computations. The list of well-known debuggers includes

• TotalView (by TotalView Tech, commercial, parallel, memory debugger)

22

• Distributed Debugging Tool-DDT (by Allinea, commercial, parallel)

• PGDBG (by Portland, commercial, parallel)

• GDB (by GNU, free, serial, Command-Line)

• Inspector (by Intel, commercial, parallel, also a memory debugger)

• Memcheck (by Valgrind, free, memory debugger).

Once a working parallel code has been developed, it should be considered to

tune up for enhancing the overall performance and optimal resource utilization [21].

Tuning refers to finding out hot spots in the program (where it consumes large por-

tions of any resource it requires, especially its total execution time) and removing

the concerning bottlenecks (which use the computing resource ineciently) [5]. It is

interesting that the 90/10 locality rule often works, according to which a program

consumes 90% of the total number of required CPU cycles for 10% of its code [3].

Analysis of code performance and resource utilization could be done through some

appropriate performance profiling/tracing software tools. A healthy list of

well-known parallel performance analysis tools includes

Profiling Tools:

• mpiP (by Lawrence Livermore National Lab, free)

• PGPROF (by Portland Group, commercial)

• Vtune Amplifier (by Intel, commercial)

• PAPI (by Uni. of Tennessee at Knoxville, free, hardware performance counter)

• SCALSCA (by several including Julich Supercomputing Center, free, a very

sophisticated analysis tool)

Tracing Tools (more expert than profiling):

• Open|SpeedShop (by Krell Institute, free)

• TAU (Tuning and Analysis Utilities, by University of Oregon, free)

• VampirTracer (by TU Dresden, free)

• Trace Collector and Analyzer (by Intel, commercial)

• MPE (MPI Parallel Environment, by Argonne National Lab, free)

• KOJAK (by several including Julich Supercomputing Center, free).

The parallelization approach of choice for the present work is MPI based parallel

processing. Therefore, the discussion of parallel performance would focus around

23

the distributed/hybrid memory architectures. In general, performance of a parallel

program in a distributed/hybrid memory with a given data size depends on many

factors including:

• Processor (total number, number per node, speed)

• Memory (capacity, bandwidth, latency, caching eects)

• Interconnect (type, bandwidth, latency)

• Environment Capabilities (OS, compilers, implementation, library)

• Algorithm, Data Structures and Memory Access Pattern

• Granularity (i.e., computation to communication ratio) [5].

The factors eecting the overall program performance are interrelated and quite

complex. Therefore, to meet the challenge of developing ecient parallel programs

that make optimal use of the available resources, certain design consideration are im-

portant to be taken into account. These consideration include problem and program

understanding, problem decomposition (data/task decomposition), I/O and commu-

nication requirements and patterns, load balancing, granularity, cost and limits of

parallelization. Some detailed discussions on these consideration are presented by

Hager and Wellein [4], and Barney [5]. Two important considerations for ecient

solutions are discussed below.

0.7.1 Proficient Domain/Task Decomposition

For a good parallel performance the balancing of workload and communication ef-

ficiency among the parallel processes are two quite necessary objectives. Domain

decomposition techniques are usually based on the graph partitioning algorithms.

Some comprehensive discussions on domain decomposition techniques and strategies

are presented by Hendrickson and Kolda ([22], 2000), Schloegel et al. ([23], 2003),

Magoules ([24], 2007) and Seal and Alurue ([25], 2008). The well known software

packages for domain decomposition include METIS [26], Chaco [27], SCOTCH [28]

and JOSTLE [29].

0.7.2 Exploitation of Locality of Reference

It is well recognized that the number of CPU clock cycles required for a typical

main memory access is much larger (sometimes more than 30 times larger) than the

24

number of CPU clock cycle required for any floating point arithmetic operation (even

for the square root and transcendental function evaluation to some extent) [30] [31].

An elegant approach for developing ecient programs is to write the source code so

as to make ecient utilization of the multilevel cache memory system (commonly

available in the modern CPUs). Multi-level cache systems in modern CPUs provide

for exploitation of the phenomenon of locality of reference. This also necessitates

the programmer to understand the memory system (i.e., when the data retain in

the caches) and memory access pattern of the program. Thus, the programmer can

restructure the code to enhance the locality of reference so that the code attempts

for caching the data in the way that a very large number of data accesses are satisfied

from the caches and a very less number of data access are needed to be satisfied from

the main memory [31]. Quoting two examples of the ways that enhance the locality

of reference: (1) all the loops on the multidimensional arrays should be traversed such

that the order of accessing the array elements matches with the order of the storage

in the memory. Recall that Fortran stores the array elements with column-major

order whereas C/C++/Java store the array element with row-major order. (2) By

keeping lesser number of arrays (and data sizes in general) in use, it reduces the cache

foot-print, as well. The cache foot-print of a code segment at a certain moment refers

to the amount of working space it requires at that moment during the execution of

the code segment. Clearly, more the number of arrays or data structures in use, larger

would be the cache foot-print. Smaller cache foot-print sizes have greater probability

of getting fitted into the cache and speed-up the execution.

0.7.3 Ecient Inter-Process Communication

A serious overhead in a parallel solution on clusters is related to the latency of

communication network. Network latency for communications among processes may

seriously harm the eciency and scalability of the parallel programs [32]. Therefore,

while developing a parallel program special care should be taken to minimize the

overheads related to inter-process communications over the network. Following are

a number of strategies in this regard discussed in [33]. A description of a similar set

of strategies has been explained by Hager and Wellein ([4], pp. 244-250).

1. Communication-Ecient Domain Partitioning

25

2. Single Dispatch of Message to the Receiver

3. Maximization of Local Computations

4. Overlapping of the Communications with Computation

0.8 Parallel Performance Metrics

A number of metrics are available in literature and commonly used to quantify perfor-

mance of parallel programs. These metrics include “total execution time”, “relative

speedup” and “relative eciency”. In this work, the “relative speedup” and “relative

eciency” will simply be called “speedup” and “eciency”, respectively. Execution

time consists of computation and communication time, both. It is “the elapsed wall

clock time from the start of execution of first process of a parallel program to the

end of execution of its last process”. Simply knowing the execution time of any code

or code segments could be done through a variety of timer functions available in the

language and implementation. Relative speedup, Ş, of a parallel program is “the

ratio of elapsed time, 1, taken by one process to solve a problem to the elapsed time,

n, taken by n processes” to solve the same problem, i.e.,

Ş =
 1
n
. (0.1)

The relative eciency, E , is defined as,

E =
Ş
n
. (0.2)

In general, speedup is observed less than n and eciency is observed between 0 and

1. In an ideal case,

n =
 1
n
, Ş = n, and E = 1. (0.3)

Sometimes so called “super-linear speedup” is observed where speedup is greater

than n. This phenomenon is caused by the cache eciency with smaller data sizes

on the n processors as compare to the single processor case. Scalability is another

characteristic of parallel programs that measure how much eciency is sustained

when the processing resources and the problem size are both increased in proportion

to each other ([34], pp. 208218). Some relatively more rigorous theoretical dis-

cussions of the performance metrics, also the Amdahl’s law, Gustafson-Barsis’ law,

26

Karp-Flatt metric, isoeciency metric and refined performance models can be found

at ([4], pp. 123130) and ([35], pp. 161173). Based on dierent approach and

applicable to possibly a dierent situation, each of these models might help to pro-

vide the indication of performance extent of a given parallel application. Study of

performance models and experiments indicate that for a given problem, the overall

speedup increases with increase in number of processing elements until an extent of

number of processing elements (relative to the given problem size) is reached. Fur-

ther increase in the number of processing elements bring the point of diminishing

returns. To gain further speedup the problem size would need to be enlarged. The

scalability analysis performed indicates that how the performance metric, speedup,

of the parallel program varies with the increase in number of processes for a given

problem size.

27

Bibliography

[1] H. J. Bungartz, M. Mehl, and C. Zenger, “Computer science and numerical

fluid mechanics - An essential cooperation,” in Notes on Numerical Fluid Me-

chanics (E. Hirschel and E. Krause, eds.), vol. 100 of Notes on Numerical Fluid

Mechanics and Multidisciplinary Design, pp. 437—450, Springer-Verlag Berlin /

Heidelberg, 2009.

[2] R. Löhner, Applied CFD Techniques: An Introduction Based on Finite Element

Methods. John Wiley and Sons, Inc., 2nd ed., 2008.

[3] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative

Approach. Morgan Kaufmann, 4th ed., 2006.

[4] G. Hager and G. Wellein, Introduction to High Performance Computing for Sci-

entists and Engineers. CRC Press, 2010.

[5] B. Barney, Introduction To Parallel Computing. Livermore Computing [On-

line]. https://computing.llnl.gov/tutorials/parallel_comp/ [Accessed:

29 July 2011].

[6] L. Tierney, “Implicit and explicit parallel computing in R,” in COMPSTAT 2008

(P. Brito, ed.), pp. 43—51, Physica-Verlag HD, 2008.

[7] J.-L. Gaudiot, J.-Y. Kang, and W. W. Ro, “Techniques to Improve Perfor-

mance Beyond Pipelining: Superpipelining, Superscalar, and VLIW,” Advances

in Computers, vol. 63, pp. 1—34, 2005.

[8] G. Hager and G. Wellein, “Modern processors,” in Introduction to High Perfor-

mance Computing for Scientists and Engineers, pp. 1—36, CRC Press, 2010.

28

[9] M. A. Ismail, S. H. Mirza, and T. Altaf, “A parallel and concurrent implementa-

tion of Lin-Kernighan heuristic (LKH-2) for solving traveling salesman problem

for multi-core processors using SPC3 programming model,” International Jour-

nal of Computer Scientce and Applications, vol. 2, no. 7, pp. 34—43, 2011.

[10] “MPJ Express (an open source Java message passing library).” http://

mpj-express.org/ [Accessed: 30 November 2011].

[11] “TOP500 Project.” https://www.top500.org/ [Accessed: 25 November 2011].

[12] “The Limulus Project.” http://limulus.basement-supercomputing.com/

[Accessed: 25 December 2011].

[13] “The Nexlink Limulus Cluster.” http://limulus.basement-supercomputing.

com/wiki/CommercialLimulus/ [Accessed: 23 December 2011].

[14] “The Limulus Project FAQs.” http://limulus.basement-supercomputing.

com/wiki/LimulusFAQ [Accessed: 23 December 2011].

[15] D. Eadline, “Benchmarking a multi-core processor for HPC,” in The Cluster

Monkey Project, July 12, 2011. http://www.clustermonkey.net//content/

view/306/1/ [Accessed: 23 December 2011].

[16] D. Eadline, “Exercising multi-core,” in Linux Magazine, September 08, 2010.

http://www.linux-mag.com/id/7855/ [Accessed: 23 December 2011].

[17] B. Wilkinson, Grid Computing: Techniques and Applications. CRC Press, 2010.

[18] M. Creel and W. L. Goe, “Multi-core CPUs, clusters, and grid computing: A

tutorial,” Computational Economics, vol. 32, pp. 353—382, 2008.

[19] J. Rhoton, Cloud Computing Explained. Recursive Press, 2nd ed., 2011.

[20] “Amazon Elastic Compute Cloud (Amazon EC2).” http://aws.amazon.com/

ec2/ [Accessed: 25 November 2011].

[21] G. Hager and G. Wellein, “Optimization techniques for modern high per-

formance computers,” in Computational Many-Particle Physics (H. Fehske,

R. Schneider, and A. WeiBe, eds.), vol. 739 of Lecture Notes in Physics, pp. 731—

767, Springer-Verlag Berlin / Heidelberg, 2008.

29

[22] B. Hendrickson and T. G. Kolda, “Graph partitioning models for parallel com-

puting,” Parallel Computing, vol. 26, no. 12, p. 1519Ű1534, 2000.

[23] K. Schloegel, G. Karypis, and V. Kumar, “Graph partitioning for high-

performance scientific simulations,” in Sourcebook of Parallel Computing

(J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and

A. White, eds.), pp. 491—541, Elsevier Science, USA, 2003.

[24] F. Magoules(Editor), Mesh Partitioning Techniques and Domain Decomposition

Techniques. Civil-Comp Ltd. Stirling, UK, 3rd ed., 2007.

[25] S. Seal and S. Alurue, “Spatial domain decomposition methods in parallel sci-

entific computing,” in Handbook of Parallel Computing - Models, Algorithms

and Applications (S. Rajasekaran and J. Reif, eds.), pp. 44/1—24, Chapman and

Hall/CRC, USA, 2008.

[26] “METIS — Family of Graph and Hypergraph Partitioning Software.” http:

//glaros.dtc.umn.edu/gkhome/views/metis [Accessed: 25 November 2011].

[27] “Chaco: Software for Partitioning Graphs.” http://www.sandia.gov/

~bahendr/chaco.html [Accessed: 25 November 2011].

[28] “SCOTCH — Software Package for Graph Partitioning.” http://www.labri.

u-bordeaux.fr/perso/pelegrin/scotch/ [Accessed: 25 November 2011].

[29] “JOSTLE — graph partitioning software.” http://staffweb.cms.gre.ac.uk/

~c.walshaw/jostle/ [Accessed: 25 November 2011].

[30] C. Pancratov, J. M. Kurzer, K. A. Shaw, and M. L. Trawick, “Why computer

architecture matters,” IEEE-CISE-1521-9615/08, 2008.

[31] C. Pancratov, J. M. Kurzer, K. A. Shaw, and M. L. Trawick, “Why computer

architecture matters: Memory access,” IEEE-CISE-1521-9615/08, 2008.

[32] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith, “Toward realistic

performance bounds for implicit CFD codes,” in Proceedings of Parallel CFD’99

(D. E. Keyes, A. Ecer, J. Periaux, N. Satofuka, and P. Fox, eds.), pp. 233—240,

Elsevier, 1999.

30

[33] A. Ali, H. Luo, A. Hassan, K. S. Syed, and M. Ishaq, “On parallel performance

of a discontinuous Galerkin compressible flow solver based on dierent numerical

fluxes,” AIAA-2011-51, 2011.

[34] A. Grama, G. Karypis, V. Kumar, and A. Gupta, Introduction to Parallel Com-

puting. Pearson/Addison-Wesley, 2nd ed., 2003.

[35] M. J. Quinn, “Performance analysis,” in Parallel Programming in C with MPI

and OpenMP, pp. 159—177, McGraw-Hill, 2003.

31

