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1. Two-Dimensional Theories

1.1. Scale Invariant Theories

Lorentz invariant two-dimensional theories enjoy the two-dimensional Poincare group,

which contains Lorentz transformations in SO(1, 1). Let us consider a conformally invari-

ant theory, that is, a theory with SO(2, 2) symmetry. It has an energy-momentum tensor

which is conserved and trace-less

∂µTµν = 0 , Tµ
µ = 0 .

These equations should be regarded as operator relations, that is, they hold in all cor-

relation functions at separated points. At coincident points there may be contact-terms

(i.e. various delta functions). If these equations can be maintained at coincident points we

say that the conformal group is free of anomalies. However, we will now prove that these

equations cannot be maintained at coincident points.

Consider the two point function 〈Tµν(q)Tρσ(−q)〉 and decompose it in the most general

way consistent with Lorentz invariance

〈Tµν(q)Tρσ(−q)〉 = (ηµρηνσ + ηµσηνρ)f1(q
2) + ηµνηρσf2(q

2)

+(qµqρηνσ+qµqσηνρ+qνqρηµσ+qνqσηµρ)f3(q
2)+(qµqνηρσ+qρqσηµν)f4(q

2)+qµqνqρqσf5(q
2) .

We will now impose the conservation equation. This gives relations among these functions.

We get the following relations f1 + q2f3 = 0, f2 + q2f4 = 0, 2f3 + f4 + q2f5 = 0. We now

plug them back and reparametrize the most general conserved two-point function as

〈Tµν(q)Tρσ(−q)〉 = −q2(ηµρηνσ + ηµσηνρ − 2ηµνηρσ)f3(q
2) + q4ηµνηρσf5(q

2)

+(qµqρηνσ+qµqσηνρ+qνqρηµσ+qνqσηµρ−2qµqνηρσ−2qρqσηµν)f3(q
2)−q2(qµqνηρσ+qρqσηµν)f5(q

2)

+qµqνqρqσf5(q
2) .

Equivalently,

〈Tµν(q)Tρσ(−q)〉 = −q2(ηµρηνσ + ηµσηνρ − 2ηµνηρσ)f3(q
2)

+(qµqρηνσ + qµqσηνρ + qνqρηµσ + qνqσηµρ − 2qµqνηρσ − 2qρqσηµν)f3(q
2)

+(qµqν − q2ηµν)(qρqσ − q2ηρσ)f5(q
2) .
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Let us see what would happen if we tried to impose the tracelessness of Tµν . If we

imposed 〈Tµ
µ (q)Tρσ(−q)〉 = 0 for all q we would get

f5(q
2) = 0

(More precisely the equation is q2f5(q2) = 0. This will be important soon.) So if we insist

on the tracelessness of T we must substitute f5 = 0 but then we would remain only with

the terms proportional to f3. Hence we would get 〈T11(q)T11(−q)〉 = 0, which violates

unitarity.

Thus we cannot have the trace to be zero.

In a scale invariant theory we can use dimensional analysis to fix

f5 = −c/q2 .

Then

〈Tµ
µ (q)Tρσ(−q)〉 = c(qρqσ − q2ηρσ)

This is a contact term. Hence, T = 0 holds as an operator equation, but it is violated at

coincident points. Also note that

〈Tµ
µ (q)T

ρ
ρ (−q)〉 = −cq2 .

This is a very important equation. It means that the two point function of the traces is

a contact term. However, note that so far we only assumed scaling symmetry. Therefore

scaling symmetry alone implies that at separated points 〈T (x)T (0)〉 = 0. This means that

T = 0 as an operator. Thus, in two dimensions scaling symmetry implies the full conformal

group. We have thus re-derived Polchinski’s theorem.

Now let us go back to 〈Tµ
µ (q)Tρσ(−q)〉 = c(qρqσ − q2ηρσ). Couple the 2d theory to

background metric. This is done to linear order via ∼
∫
d2xTµνgµν . Hence in the presence

of a background metric

〈Tµ
µ (0)〉g ∼

∫
d2x〈Tµ

µ (0)T
ρσ(x)〉0gρσ(x) ∼ c

∫
d2x

(
∂ρ∂σδ2(x)− ηρσ∂2δ2(x)

)
gρσ

∼ c(∂ρ∂σ − ηρσ∂2)gρσ ∼ cR .

The equation

T = − c

24π
R
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is the familiar trace anomaly in two dimensions, c is the central charge. It is also easy

to show that in every conformal field theory c > 0 (in the appropriate convention). One

again looks at 〈T11T11〉 and finds that this is proportional to c. Hence c > 0.

There is another useful interpretation of c. Consider a conformal field theory com-

pactified on a two-sphere S2 of radius a

ds2 =
4a2

(1 + |x|2)2
2∑

i=1

(dxi)
2 , |x|2 =

2∑

i=1

(xi)
2 .

The Ricci scalar is R = 2/a2. Because of the quantum anomaly, the partition function

ZS2 =

∫
[dΦ]e

−
∫
S2

L(Φ)

depends on a. We find that

d

d log a
logZS2 = −

∫

S2

√
g < T >=

c

24π

∫

S2

√
gR =

c

24π

2

a2
V ol(S2) =

c

3
.

Thus the logarithmic derivative of the partition function yields the c anomaly. The ap-

pearance of c in the path integral over the theory compactified on a two-sphere turns out

to be natural in some respects that we will understand later.

We will now consider non-scale invariant theories.

1.2. Massive Theories

Conformal fixed points can be perturbed by relevant operators (or marginally rele-

vant). This triggers a flow CFTUV to CFTIR. We will now study the correlation functions

of the stress tensor in such a case. Hence, we no longer impose scale invariance, just diff

invariance. To avoid having to discuss contact terms (which were very important above!)

we switch to position space now and discuss only two-point functions of the stress tensor.

It is further convenient to work with the complex coordinate z = x1 + ix2.

Then the conservation equations are ∂zTzz = −∂zT , ∂zTzz = −∂zT . We can parame-

terize the most general two point functions consistent with Lorentz

〈Tzz(z)Tzz(0)〉 =
F (zz,M)

z4

〈T (z)Tzz(0)〉 =
G(zz,M)

z3z
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〈T (z)T (0)〉 = H(zz,M)

z2z2

However, from our analysis of the implications of diff-invariance in momentum space

we already know that there are only two real independent functions. So there must be

relations between F ,G,H. A little algebra shows that the relation are Ḟ = −Ġ + 3G,

Ḣ − 2H = −Ġ+G, where Ẋ ≡ |z2| dX
d|z|2 .

Using these relations one finds that the combination C ≡ F − 2G − 3H satisfies the

following differential equation

Ċ = −6H , (1.1)

however, sinceH is positive definite, C decreases monotonically as we increase the distance.

Let us now identify C at very short and very long distances. At very short and very long

distances it tends to the appropriate values in the conformal field theory. However, in the

conformal field theory G,H are contact terms. Hence, G,H are subleading at separated

points compared to F ∼ c. (It is easy to check that F is insensitive to the function f3 in

the conformal field theory and only knows about f5.)

Hence, we have established a monotonic decreasing function that starts from cUV and

flows to cIR. This means that the space of CFTs is foliated. No cycles. Also implies that

degrees of freedom are lost along every flow. c is a measure of degrees of freedom. We can

integrate the equation (1.1) to obtain

cuv − cir ∼
∫

d log |z2|H ∼
∫

d2z|z2|〈T (z)T (0)〉 > 0 . (1.2)

Since c can also be understood as the path integral over the two-sphere, the inequality

can also be interpreted as a statement about the partition function of the massive theory

on S2.

2. Three-Dimensional Theories

The problem of identifying a quantity that would generalize Zamolodchikov’s inequal-

ity cuv > cir has been open for several decades. It is still open, but since 2010 there is at

least a plausible conjecture. We will review the conjecture and some of the evidence for

it. The conjecture arose independently via studies in AdS/CFT and via studies in 3d field

theories.
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2.1. The Conjecture and Checks for Perturbative Flows

Any conformal field theory on R3 can be canonically mapped to a theory on the curved

space S3. This is because S3 is stereographically equivalent to flat space and (thus the

metric on S3 is conformal to R3). In three dimensions there are no trace anomalies, and

hence the partition function over S3 has no logarithms of the radius.

Indeed, consider

ZS3 =

∫
[dΦ]e

−
∫
S3

L(Φ)
.

This is generally divergent and takes the form (for a three-sphere of radius a)

logZS3 = c1(Λa)
3 + c2(Λa) + F . (2.1)

Terms with inverse powers of Λ are dropped since they are not part of the continuum

theory. Since this is a conform field theory Λ is the only scale (of course a fictitious scale!),

and so nothing can contaminate the constant F . (Re-scalings of Λ only allow to dial c1,2.)

Hence, F is part of the continuum theory, independent of the radius of the sphere.

Imagine a three-dimensional flow from some CFTuv to some CFTir. Then we can

compute Fuv and Fir via the procedure above. In fact, the F ’s can be complex numbers.

The conjecture is

|Fuv| > |Fir|

Let us consider the computation of F is simple examples. Take a free massless scalar

L = 1
2(∂Φ)

2. To put it in a curved background while preserving conformal invariance we

write (in d dimensions)

S =
1

2

∫
d3x

√
g

(
(∇Φ)2 +

d− 2

4(d− 1)
R[g]φ2

)
.

This coupling to the Ricci scalar is necessary to preserve Weyl invariance (which is just

the generalization of the conformal group to curved space)

g → e2σg , φ→ e−
d−2

2
σφ .

The partition function in three dimensions is thus

− logZS3 =
1

2
log det

(
−∇2 +

1

8
R

)
,
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and the Ricci scalar is related to the radius in three dimensions via R(= d(d−1)
a2 ) = 6

a2 .

The spherical harmonics are all known. The eigenvalues are

λn =
1

a2

(
n+

3

2

)(
n+

1

2

)

and their respective multiplicities

mn = (n+ 1)2

The free energy on the three sphere due to a single conformally coupled scalar is therefore

− logZS3 =
1

2

∞∑

n=0

mn

(
−2 log(µ0a) + log

(
n+

3

2

)
+ log

(
n− 1

2

))

This sum clearly diverges and needs to be regulated. One choses judiciously the zeta

function. One finds that with this regulator
∑

n=0 mn = ζ(−2) = 0 and therefore a loga-

rithmic dependence on the radius is absent, consistently with the absence of a conformal

anomaly. We therefore remain with the sum

The remaining sum can be evaluated in terms of derivatives of the Hurwitz zeta

function

ζ(s; q) =
∞∑

k=0

(k + q)−s .

For q = 1 it coincides with the definition of the ordinary zeta function. We find that

formally

Fscalar = −1

2

d

ds

[
2ζ(s− 2,

1

2
) +

1

2
ζ(s,

1

2
))

]
=

1

16

(
2 log 2− 3ζ(3)

π2

)
≈ 0.0638

One can perform a similar computation for a free massless Dirac fermion field

Ffermion =
log 2

4
+

3ζ(3)

8π2
≈ 0.219

The absolute value of the partition function of a massless Majorana fermion is just a half

of the result above.

Chern-Simons theory associated to some gauge group G is

S =
k

4π

∫

M

Tr

(
A ∧ dA+

2

3
A ∧A ∧ A

)
,
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where k is called the level. This theory has no second derivatives hence it has no propa-

gating degrees of freedom. The field equation is

0 = F = dA+ A ∧A

This means that the “curvature of the gauge field” vanishes everywhere. These are called

flat connections. The space of flat connection on the manifold M is fixed completely by

topological properties of the manifold.

Surprisingly (!), even though there are no degrees of freedom associated to Chern-

Simons theory, it also enters into the F-theorem. The partition function of CS theory on the

three sphere has been computed by Witten in his famous paper about Jones Polynomials.

He found that for U(1) CS theory the answer is 1
2 log k while for U(N) it is

FCS(k,N) =
N

2
log(k +N)−

N−1∑

j=1

(N − j) log

(
2 sin

πj

k +N

)

So not only CS theory contributes to F , it actually contributes to it with a very large

coefficient when the level is large!

One can check several simple flows. One can start from the conformal field theory

described by U(1)k CS theory coupled toNf Dirac fermions of charge 1. This is a conformal

field theory because the Lagrangian has no coupling constant that can run. The CS

coefficient is discrete because it is topological in nature. This conformal field theory is

weakly coupled when k >> 1. Hence, the F coefficient is

FUV ≈ 1

2
log k +Nf

(
log 2

4
+

3ζ(3)

8π2

)

Let us now deform this by a mass term. The fermions disappear, but there is a pure

CS term in the infrared with a shifted level k±Nf/2, where the sign depends on the sign

of the mass term. Hence,

FIR ≈ 1

2
log (k ±Nf/2) ,

and it follows that in the regime where our analysis

FUV > FIR

holds.

There are many more complicated examples that have been checked, all consistent

with the conjecture. There is no proof of this conjecture. For the special class of N = 2

supersymmetric theories in three dimensions, one can develop some confidence in this

conjecture. This is discussed towards the end of these notes.
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3. Four-Dimensional Theories

We saw that in two dimensions the natural monotonic property of the RG evolution

was tightly related to the trace anomaly in two dimensions. In three dimensions the

conjecture is directly about some sphere partition function (there are no trace anomalies

in three dimensions).

In four dimensions there are two trace anomalies and the monotonic property of flows

concerns again with these anomalies. The anomalous correlation function is now

〈Tµν(q)Tρσ(p)Tγδ(−q − p)〉

And again, like in our analysis in two dimensions, there are contact-terms which are nec-

essarily inconsistent with Tµ
µ = 0. In four dimensions it turns out that there are two

independent trace anomalies. Introducing a background metric field we have

Tµ
µ = aE4 − cW 2 ,

where E4 = R2
µνρσ − 4R2

µν +R2 is the Euler density and W 2
µνρσ = R2

µνρσ − 2R2
µν +

1
3R

2 is

the Weyl tensor squared. These are called the a- and c-anomalies.

Cardy has conjectured in the 80’s that if the conformal field theory of the ultraviolet

CFTuv flows to some CFTir then

auv > air .

The c-anomaly does not satisfy such an inequality and also the more intuitive concept of

dofs, the free energy, does not satisfy any general inequality.

SInce the four sphere is conformally flat the partition function on S4 selects only the

a-anomaly. Indeed,

∂log a logZS4 = −
∫

S4

√
g〈Tµ

µ 〉 = −a

∫

S4

√
gE4 = −64π2a

So we see that the conjecture in n dimensions is about the partition function of the n-

sphere.

Real scalars contribute to the anomalies (a, c) = 1
90(8π)2 (1, 3), Weyl fermion: (a, c) =

1
90(8π)2 (11/2, 9), gauge field: (a, c) = 1

90(8π)2 (62, 36).

We will now present a new proof of the two-dimensional case and then address four-

dimensional theories. The techniques below are not directly as powerful in odd-dimensional

flows since they rely strongly on the existence of anomalies.
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The main idea is to promote various coupling constants to background fields.

Imagine any renormalizable QFT (in any number of dimensions) and set all the mass

parameters to zero. The extended symmetry includes the full conformal group. If the

number of space-time dimensions is even then the conformal group has trace anomalies.

If the number of space-time dimensions is of the form 4k + 2, there may be gravitational

anomalies. We will completely ignore gravitational anomalies here.

Upon introducing the mass terms, one violates conformal symmetry explicitly. Thus,

in general, the conformal symmetry is violated both by trace anomalies and by an opera-

torial violation of the equation Tµ
µ = 0 in flat space-time. The latter violation can always

be removed by letting the coupling constants transform. Indeed, replace every mass scale

M (either in the Lagrangian or associated to some cutoff) by Me−τ(x), where τ(x) is

some background field (i.e. a function of space-time). Then the conformal symmetry of

the Lagrangian is restored if we accompany the ordinary conformal transformation of the

fields by a transformation of τ . To linear order, τ(x) always appears in the Lagrangian as

∼
∫
ddx τTµ

µ . Setting τ = 0 one is back to the original theory, but we can also let τ be

some general function of space-time. The variation of the path integral under such a con-

formal transformation that also acts on τ(x) is thus fixed by the anomaly of the conformal

theory in the ultraviolet. This procedure allows us to study some questions about general

RG flows using the constraints of conformal symmetry.

Consider integrating out all the high energy modes and flow to the deep infrared.

Since we do not integrate out the massless particles, the dependence on τ is regular and

local. As we have explained, the dependence on τ is tightly constrained by the conformal

symmetry. Since in even dimensions the conformal group has trace anomalies, these must

be reproduced by the low energy theory. The conformal field theory at long distances,

CFTIR, contributes to the trace anomalies, but to match to the defining theory, the

dilaton functional has to compensate precisely for the difference between the anomalies

of the conformal field theory at short distances, CFTuv, and the conformal field theory at

long distances, CFTir.

3.1. Warm Up

Let us see how these ideas are borne out in two-dimensional renormalization group

flows. Let us study the constraints imposed by conformal symmetry on the action of τ

(which is a background field). An easy way to analyze these constraints is to introduce a

fiducial metric gµν into the system. Weyl transformations act on the dilaton and metric
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according to τ → τ + σ, gµν → e2σgµν . If the Lagrangian for the dilaton and metric is

Weyl invariant, upon setting the metric to be flat, one finds a conformal invariant theory

for the dilaton. Hence, the task is to classify local diff× Weyl invariant Lagrangians for

the dilaton and metric background fields.

It is convenient to define ĝµν = e−2τgµν , which is Weyl invariant. At the level of

two derivatives, there is only one diff×Weyl invariant term:
∫ √

ĝR̂. However, this is a

topological term, and so it is insensitive to local changes of τ(x). Therefore, if one starts

from a diff×Weyl invariant theory, upon setting gµν = ηµν , the term
∫
d2x(∂τ)2 is absent.

The key is to recall that unitary two-dimensional theories have a trace anomaly

Tµ
µ = − c

24π
R . (3.1)

(In this convention a free scalar field has c = 1.) One must therefore allow the Lagrangian

to break Weyl invariance, such that the Weyl variation of the action is consistent with (3.1).

The action functional which reproduces the two-dimensional trace anomaly is

SWZ [τ, gµν] =
c

24π

∫
√
g
(
τR+ (∂τ)2

)
. (3.2)

We see that even though the anomaly itself disappears in flat space (3.1), there is a two-

derivative term for τ that survives even after the metric is taken to be flat. This is of

course the familiar Wess-Zumino term for the two-dimensional conformal group.

Consider now some general two-dimensional RG flow from a CFT in the UV (with

central charge cuv and a CFT in the IR (with central change cir). Replace every mass

scale according to M → Me−τ(x). We also couple the theory to some background metric.

Performing a simultaneous Weyl transformation of the dynamical fields and the background

field τ(x), the theory is non-invariant only because of the anomaly δσS = cuv

24

∫
d2x

√
gσR.

Since this is a property of the full quantum theory, it must be reproduced at all scales.

An immediate consequence of this idea is that also in the deep infrared the effective action

should reproduce the transformation δσS = cuv

24

∫
d2x

√
gσR. At long distances, one obtains

a contribution cir to the anomaly from CFTir, hence, the rest of the anomaly must come

from an explicit Wess-Zumino functional (3.2) with coefficient cuv − cir. In particular,

setting the background metric to be flat, we conclude that the low energy theory must

contain a term
cuv − cir

24π

∫
d2x(∂τ)2 . (3.3)
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Note that the coefficient of this term is universally proportional to the difference between

the anomalies and it does not depend on the details of the flow. Higher-derivative terms

for the dilaton can be generated from local diff×Weyl invariant terms, and there is no a

priori reason for them to be universal (that is, they may depend on the details of the flow,

and not just on the conformal field theories at short and long distances).

Zamolodchikov’s theorem follows directly from (3.3). Indeed, we consider the partition

function of the (Euclidean) theory in the presence of two insertions of the background τ(x),

as in figure 1.

Fig.1: The partition function of the Euclidean theory with two insertions of the background

field with momentum k.

From this general object we can extract cuv − cir by expanding around k = 0, reading

out the term quadratic in momentum, and matching to (3.3). Reflection positivity thus

immediately leads to

cuv > cir . (3.4)

We can be more explicit about what precisely goes into the calculation of figure 1.

The coupling of τ to matter must take the form τTµ
µ + · · ·, where the corrections have more

τs. To extract the two-point function of τ with two derivatives we must use the insertion

τTµ
µ twice. (Terms containing τ2 can be lowered once, but they do not contribute to the

two-derivative term in the effective action of τ .) As a consequence, we find that

〈
e
∫

τTµ
µ d2x〉 = · · ·+ 1

2

∫ ∫
τ(x)τ(y)〈Tµ

µ (x)T
µ
µ (y)〉d2xd2y + · · ·

= · · ·+ 1

4

∫
τ(x)∂ρ∂στ(x)

(∫
(y − x)ρ(y − x)σ〈Tµ

µ (x)T
µ
µ (y)〉d2y

)
d2x+ · · · .

(3.5)

11



In the final line of the equation above, we have concentrated entirely on the two-derivative

term. It follows from translation invariance that the y integral is x-independent

∫
(y − x)ρ(y − x)σ〈Tµ

µ (x)T
µ
µ (y)〉d2y =

1

2
ηρσ

∫
y2〈Tµ

µ (0)T
µ
µ (y)〉d2y . (3.6)

To summarize, one finds the following contribution to the dilaton effective action at

two derivatives
1

8

∫
d2xτ τ

∫
d2yy2〈T (y)T (0)〉 . (3.7)

According to (3.3), the expected coefficient of τ τ is (cuv − cir)/24π, and so by comparing

we obtain

∆c = 3π

∫
d2yy2〈T (y)T (0)〉 . (3.8)

As we have already mentioned, ∆c > 0 follows from reflection positivity (which is a

property of unitary theories). Equation (3.8) agrees with the classic results about two-

dimensional flows.

3.2. Back to Four Dimensions

One starts by classifying local diff×Weyl invariant functionals of τ and a background

metric gµν . Again, we demand invariance under

gµν −→ e2σgµν , τ −→ τ + σ . (3.9)

We will often denote ĝ = e−2τgµν . The combination ĝ transforms as a metric under

diffeomorphisms and is Weyl invariant.

The most general theory up to two derivatives is:

f2

∫
d4x

√
−detĝ

(
Λ+

1

6
R̂

)
, (3.10)

where we have defined R̂ = ĝµνRµν [ĝ].

Since we are ultimately interested in the Minkowskian theory, let us evaluate the

kinetic term with gµν = ηµν . Using integration by parts we get

S = f2

∫
d4xe−2τ (∂τ)2 . (3.11)

One can use the field redefinition

Ψ = 1− e−τ (3.12)
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to rewrite this as

S = f2

∫
d4xΨ Ψ . (3.13)

One can also study terms in the effective action with more derivatives. With four

derivatives, one has three independent (dimensionless) coefficients

∫
d4x

√
−ĝ

(
κ1R̂

2 + κ2R̂
2
µν + κ3R̂

2
µνρσ

)
. (3.14)

It is implicit that indices are raised and lowered with ĝ. Recall the expressions for the

Euler density
√
−gE4 and the Weyl tensor squared

E4 = R2
µνρσ − 4R2

µν +R2 , W 2
µνρσ = R2

µνρσ − 2R2
µν +

1

3
R2 . (3.15)

We can thus choose instead of (3.14) a different parameterization

∫
d4x

√
−ĝ

(
κ′1R̂

2 + κ′2Ê4 + κ
′
3Ŵ

2
µνρσ

)
. (3.16)

We immediately see that the κ′2 term is a total derivative. If we set gµν = ηµν , then

ĝµν = e−2τηµν is conformal to the flat metric and hence also the κ′3 term does not play

any role as far as the dilaton interactions in flat space are concerned. Consequently, terms

in the flat space limit arise solely from R̂2. A straightforward calculation yields

∫
d4x

√
−ĝR̂2

∣∣∣∣
gµν=ηµν

= 36

∫
d4x

(
τ − (∂τ)2

)2 ∼
∫

d4x
1

(1−Ψ)2
( Ψ)2 . (3.17)

So far we have only discussed diff×Weyl invariant terms in four-dimensions, but from

the two-dimensional examples we anticipate the importance of the anomalous functional.

The most general anomalous variation one needs to consider takes the form

δσSanomaly =

∫
d4x

√
−gσ

(
cW 2

µνρσ − aE4

)
. (3.18)

The question is then how to write a functional Sanomaly that reproduces this anomaly.

(Note that Sanomaly is only defined modulo diff×Weyl invariant terms.) Without the field

τ one must resort to non-local expressions, but in the presence of the dilaton one has a

local action.

It is a little tedious to solve (3.18), but the procedure is straightforward in principle.

We first replace σ on the right-hand side of (3.18) with τ

Sanomaly =

∫
d4x

√
−gτ

(
cW 2

µνρσ − aE4

)
+ · · · . (3.19)
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While the variation of this includes the sought-after terms (3.18), as the · · · suggest, this
cannot be the whole answer because the object in parenthesis is not Weyl invariant. Hence,

we need to keep fixing this expression with more factors of τ until the procedure terminates.

Note that
√
−gW 2

µνρσ, being the square of the Weyl tensor, is Weyl invariant, and hence

we do not need to add any fixes proportional to the c-anomaly in (3.19). This makes the

c-anomaly “Abelian” in some sense. The “non-Abelian” structure coming from the Weyl

variation of E4 is the key to our construction. The a-anomaly is therefore quite distinct

algebraically from the c-anomaly.

The final expression for Sanomaly is

Sanomaly =− a

∫
d4x

√
−g

(
τE4 + 4

(
Rµν − 1

2
gµνR

)
∂µτ∂ντ − 4(∂τ)2 τ + 2(∂τ)4

)

+ c

∫
d4x

√
−gτW 2

µνρσ .

(3.20)

Note that even when the metric is flat, self-interactions of the dilaton survive. This is

analogous to what happens in pion physics when the background gauge fields are set to

zero and also to what we saw in two dimensions.

Setting the background metric to be flat we thus find that the non-anomalous terms

in the dilaton generating functional are

∫
d4x

(
α1e

−4τ + α2(∂e
−τ )2 + α3

(
τ − (∂τ)2

)2)
, (3.21)

where αi are some real coefficients.

The a-anomaly has a Wess-Zumino term, leading to the additional contribution

SWZ = 2(aUV − aIR)

∫
d4x

(
2(∂τ)2 τ − (∂τ)4

)
. (3.22)

The coefficient is universal because the total anomaly has to match.

We see that if one knew the four-derivative terms for the dilaton, by comparing (3.21)

and (3.22), one could extract aUV − aIR. A more transparent way to discern the WZ

term from the term proportional to α3 in (3.21) is in terms of the variable Ψ = 1− e−τ .

Then (3.21) becomes

∫
d4x

(
α1Ψ

4 + α2(∂Ψ)2 +
α3

(1−Ψ)2
( Ψ)2

)
, (3.23)
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while the WZ term (3.22) is

SWZ = 2(aUV − aIR)

∫
d4x

(
2(∂Ψ)2 Ψ

(1−Ψ)3
+

(∂Ψ)4

(1−Ψ)4

)
. (3.24)

We see that if we consider background fields Ψ which are null ( Ψ = 0) α3 disappears

and only the last term in (3.24) remains. Therefore, by computing the partition function

of the QFT in the presence of four null insertions of Ψ one can extract directly aUV −aIR.

1 )

2 )

3 )

4 )

Fig.2: Four insertions of the background field Ψ with
∑

i ki = 0 and k2i = 0. The blob

represents the quantum matter fields.

Indeed, consider all the diagrams with four insertions of a background Ψ with momenta

ki, such that
∑

i ki = 0 and k2i = 0 (see figure 2). Expanding this amplitude to fourth order

in the momenta ki, one finds that the momentum dependence takes the form s2 + t2 + u2

with s = 2k1 · k2, t = 2k1 · k3, u = 2k1 · k4. Our effective action analysis shows that the

coefficient of s2 + t2 + u2 is directly proportional to aUV − aIR.

In fact, one can even specialize to the so-called forward kinematics, choosing k1 = −k3

and k2 = −k4. Then the amplitude of figure 2 is only a function of s = 2k1 ·k2. aUV −aIR

can be extracted from the s2 term in the expansion of the amplitude around s = 0.

Continuing s to the complex plane, there is a branch cut for positive s (corresponding to

physical states in the s-channel) and negative s (corresponding to physical states in the

u-channel). There is a crossing symmetry s ↔ −s so these branch cuts are identical.

To calculate the imaginary part associated to the branch cut we utilize the optical

theorem. See figure 3. The imaginary part is manifestly positive definite.
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1 )

2 )

1 )

2 )

~ dX

Fig.3: The imaginary part is given by calculating all the connected diagrams involving two

insertions of the background field and any final state. One then squares the amplitude for

the transition to this particular final state and sums over all possible final states.

Using Cauchy’s theorem we can relate the low energy coefficient of s2, aUV − aIR, to

an integral over the branch cut. Fixing all the coefficients one finds

aUV − aIR =
1

4π

∫

s>0

ImA(s)

s3
. (3.25)

As explained, the imaginary part ImA(s) can be evaluated by means of the optical the-

orem, figure 3, and hence it is manifestly positive. Since the integral converges by power

counting (and thus no subtractions are needed), we conclude

aUV > aIR . (3.26)

Note the difference between the ways positivity is established in two and four dimen-

sions. In two dimensions, one invokes reflection positivity of a two-point function (reflection

positivity is best understood in Euclidean space). In four dimensions, the Wess-Zumino

term involves four dilatons, so the natural positivity constraint comes from the forward

kinematics (and hence, it is inherently Minkowskian).

Let us say a few words about the physical relevance of (3.26). Such an inequality

constrains severely the dynamics of quantum field theory, and in favorable cases can be

used to establish that some symmetries must be broken or that some symmetries must

be unbroken. In a similar fashion, if a system naively admits several possible dynamical

scenarios one can use (3.26) as an additional handle.

16



4. Looking for a Single Overarching Principle

The conjecture in any d-dimensional field theory seems to be that the partition func-

tion on Sd in the deep UV vs the deep IR satisfies

− logZuv
Sd > − logZir

Sd ,

where these partition functions are evaluated in the respective conformal field theories.

This proposal passes some elementary tests. For instance, for this conjecture to be

able to even take off one needs to show that ZCFT
Sd is independent of exactly marginal

couplings. Otherwise the conjecture is manifestly false.

Indeed, let λ be an exactly marginal coupling, coupling to an exactly marginal operator

O. Then we have a family (actually a manifold) of conformal field theories CFTλ. We

have

∂λZ
CFTλ

Sd =

∫
[dΦ]

(∫

Sd

ddx
√
gO(x)

)
e
−
∫
Sd

ddx
√
g(L0[Φ]+λO)

.

This is an integrated one point function on the sphere. A conformal transformation maps

this to a one point function of this exactly marginal operator in flat space. However, in a

CFT the only operator with nonzero expectation value is the unit operator, with which a

marginal operator cannot mix by dimensional analysis. Thus,

∂λZ
CFTλ

Sd = 0 .

This fundamental invariance property is NOT shared by the free energy of QFT.

Indeed, the free energy depends on exactly marginal operators (see N = 4 at strong vs

weak ’t Hooft coupling, where one finds the famous 3/4). Therefore the free energy is not

a good candidate in general.

Another issue is that the partition function over the sphere lacks obvious intuitive

meaning. We will now review a curious duality between the partition function and a

certain entanglement entropy. The precise statement is that for a CFT in d dimensions the

entanglement entropy (EE) across an Sd−2 contains the same data about the continuum

theory as the partition function over Sd. In particular, if d is even, the EE contains

a log(RΛUV ), where a is the a-anomaly, and in odd dimensions it contains a finite piece F .

Due to lack of time I am not going prove this curious duality, instead, I will define the

EE and discuss some basic properties of it. Hopefully, by the end of this the statement of

the duality will be clear.
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A quantum system can be either in a pure state with a wave function Ψ or we may

be ignorant about its wave function and it may be, with probability pj , in a state Ψj (this

is called a mixed state). Then the appropriate description is with the density matrix

ρ =
∑

j

pj |Ψj〉〈Ψj | .

The entropy associated with a mixed state is

S = −
∑

pj log(pj) = −Tr(ρ log ρ)

The entropy of a mixed state is therefore strictly positive while that of a pure state vanishes.

Sometimes we don’t really have a choice and we must only describe the system with

a density matrix. Consider a product Hilbert space H = HA ⊗HB and assume that the

wave function in this large Hilbert space is fixed. We may be ignorant about the state of

the B degrees of freedom and consequently (entanglement) we don’t know the state of A

either. In general

ρA = TrB(ρAB)

For instance, if the full system is in a pure state Ψ then ρA = TrB(|Ψ〉〈Ψ|). The reduced

density matrix therefore has entropy SA. This is the famous entanglement entropy. It is

easy to prove that if the full system is in a pure state then SA = SB.

Entanglement entropy has proven to be very useful as topological order parameter

in various applications to condensed matter systems (in fact there is a lot of interest in

this quantity nowadays). We would like to apply this for the quantum vacuum |V AC〉
(the quantum vacuum is a pure state). At t = 0 we divide our space Rd−1 into two

complementary regions A,B = Ac. The Hilbert space should look like HA ⊗ HB. We

define

ρA = TrB(|V AC〉〈V AC|)

and cross our fingers that this makes sense. In fact because of the ultraviolet divergences

in the theory, across the boundary ∂A there are divergences sensitive to the short distance

cutoff. In general the answer would look like

SA = Λd−2
UV V ol(∂A) + Λd−4

UV Ld−4 + ...

Note the emergent area law – people have tried to connect it to BH entropy. Here L is a typ-

ical scale of the region A. In even dimensions there is a logarithmic term κ(A) log(ΛUV L)
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while in odd dimensions there is just a finite term µ(A). κ(A) and µ(A) can be interpreted

as parts of the continuum theory IF the the underlying QFT is conformal. This is because

no rescaling of the cutoff can mix with the coefficient of the logarithm in even dimensions,

and similarly in odd dimensions. (In massive theories the data really associated to the

continuum theory is more subtle.) Note the superficial similarity to the partition function.

The claim is that (for conformal field theories) if A = Sd−2 then in even dimensions

κ(Sd−2) ∼ a and in odd dimensions µ(Sd−2) ∼ F . This can be proven by a sequence of

conformal transformations.

Then one could hope to prove the monotonicity of the RG evolution via properties of

the EE. Indeed, there is an alternative proof of the Zamolodchikov theorem in two dimen-

sions using one of the simple inequalities the entanglement entropy satisfies (in information

theory this inequality is called strong subadditive inequality) for any two regions A, B

S(A) + S(B) ≥ S(A ∪B) + S(A ∩B) .

Perhaps one can use such general properties of the EE to establish the theorem in any d.

5. Localization

Localization is the phenomenon that a complicated integral (even a path integral) can

be evaluated by considering only a very small subset of the integration domain. We will

now develop some intuition by studying a simple ordinary integral where this takes place.

The setup is a matrix model with fermions

5.1. Toy Model

Z =

∫
dxdψ1dψ2e

−S(x,ψ1,2) (5.1)

where the action is just the most general conceivable one

S(x,ψ1,2) = S0(x)− ψ1ψ2S1(x)

with the usual rule for integration of fermionic variables

∫
dψ1dψ2ψ1ψ2 = 1
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We can integrate over the fermions and find

Z =

∫
dxS1(x)e

−S0 . (5.2)

This would generally obtain contributions from all x’s.

Consider the special case

S(x,ψ1,2) =
1

2
(∂h)2 − ψ1ψ2∂

2h , (5.3)

with h(x) any function. Now the integral (5.2) becomes

Z =

∫
dx∂2he−

1

2
(∂h)2

To guarantee convergence we assume |∂h| → ∞ as x → ±∞.

This integral can actually be done. It is almost a total derivative. Exercise: show

that

Z =
√
2π

∑

{xi

∣∣∂h(xi)=0}

sign[∂2h(xi)] . (5.4)

We say in this case that the integral localizes on the critical points.

We will now show how to solve for the partition function of (5.3) in a more general

way, namely a way that generalizes vastly beyond the simple example above (for which

one could evaluate the “path integral” directly). We slightly rewrite (5.3) as

S =
1

2
H2 + iH∂h− ψ1ψ2∂

2h

This does not change the partition function in an important way since the H integral is

Gaussian. Now we can find an off-shell SUSY

δx = ε(ψ1 + ψ2) , δψ1,2 = ±εiH , δH = 0 . (5.5)

One easily finds δ2 = 0. It turns out that the action is Q-exact. An easy calculation reveals

S =
1

4
{Q, (ψ1 − ψ2)(2∂h+ iH} ≡ {Q, V }

Hence, the path integral is

Z =

∫
dxe−{Q,V } (5.6)
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Now add an arbitrary real (positive) parameter t and consider

Zt =

∫
dxdψ1dψ2e

−t{Q,V } (5.7)

This is clearly independent of t. Indeed a derivative with respect to t gives Q of something

and this vanishes as usual. Hence we can take t → ∞. At t → ∞ the only contributions

arise from

{Q, V } = 0 (5.8)

which is given by (integrating out H)

∂h = ψ1,2 = 0

Hence, we see manifestly that the integral localizes to the critical points.

It only remains to expand S = 1
2 (∂h)

2 − ψ1ψ2∂2h around these critical points to

second order. We find S = 1
2 (∂

2h(xi))2(x − xi)2 − ψ1ψ2∂2h(xi) The Gaussian integral

around the zeros of {Q, V } therefore looks like
∫

dxdψ1dψ2e
−t( 1

2
(∂2h(xi))

2(x−xi)
2−ψ1ψ2∂

2h(xi)) = t∂2h(xi)

∫
dxe−t 1

2
(∂2h(xi))

2(x−xi)
2

= t∂2h(xi)

∫
dxe−t 1

2
(∂2h(xi))

2(x−xi)
2

∼
√
t
∂2h(xi)

|∂2h(xi)|
(5.9)

The
√
t cancels from the H integral and in total we thus get (5.4).

5.2. General Story

One constructs an action S where there is a nilpotent symmetry δ2 = 0. Then, one

can always modify

S′ = S + t{Q, V } . (5.10)

The partition function does not depend on t. Furthermore, correlation functions of δ closed

operators, δO = 0, are independent of t.

If {Q, v} is positive definite we can take t → ∞ and then the path integral reduces to

integrating over the locus {Q, V } = 0.

In general the Lagrangian may or may not be itself Q-exact. Namely, there or may not

exist a Ψ such that L = {Q,Ψ}. Is such a Ψ exist then also the the EM tensor would be

Q-exact and the theory in the Q-closed sector would be actually topological. In particular

the partition function does not depend on the metric
δ

δhab
Z = 〈Tab〉 = 〈{Q,

δ

δhab
Ψ}〉 = 0 (5.11)

However, there are many non-topological theories which can be localized. In the next

section we will develop some of the necessary formalism.
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5.3. Localization in QFT

It turns out that for certain supersymmetric QFTs we can calculate the partition

function on various curved manifolds. The path integral reduces to a matrix integral.

There are many examples of this phenomenon. In four dimensions we find N = 2 theories

on S4, N = 1 theories on S3×S1. In three dimensions N = 2 theories can be localized on

S3 and various squashings of this S3. There could be many more examples, nobody has

yet to classify the various possibilities.

The case of 3d is of special interest in the context of these lectures because the partition

function on S3 is exactly what appears in the context of the F -theorem. Hence, one could

learn things about RG flows by studying theories that can be localized!

Let us begin by explaining how supersymmetric theories can be put on curved spaces

(often while preserving supersymmetries).

Let us start from N = 2 theories in flat 2+1 dimensional space. It turns out that the

interesting class of theories consists of those that have an R-symmetry.

N = 2 is defined by the algebra

{Qα, Qβ} = {Qα, Qβ} = 0 , {Qα, Qβ} = 2σµαβPµ + 2iεαβZ .

The σµ can be chosen real and symmetric. Z is a real central term (which in the di-

mensional reduction corresponds to the momentum P3 in the reduced direction). The

central term will not play a direct role in our discussions. As in four dimensions, the

automorphism of this algebra is U(1)R, rotating the supercharges. We will assume that

this automorphism is a symmetry of the Lagrangian.

N = 2 in three dimensions is very similar to N = 1 in four dimensions, they have

the same amount of supersmmetry and the same superspace. So writing Lagrangians for

N = 2 in three dimensions in flat space is quite straightforward.

The theories under discussion don’t have to be conformal. Normally coupling to curve

space means deforming the theory by
∫
d3xTµνhµν + · · ·. To do this for supersymmetric

theories we need to embed the EM tensor into a supersymmetric multiplet. For theories

with an R-symmetry the natural candidate is called the R-multiplet. It is defined by

D
βRαβ = χα , Dαχβ = 0 , Dαχα = −D

α
χα . (5.12)

Here Rαβ = −2γµαβRµ is the symmetric bi-spinor corresponding to Rµ. We can express χα

in terms of a real linear superfield J (Z) ,

χα = −4iDαJ (Z) , D2J (Z) = D
2J (Z) = 0 . (5.13)
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In components,

Rµ = j(R)
µ − iθSµ − iθSµ −

(
θγνθ

) (
2Tµν + iεµνρ∂

ρJ (Z)
)

− iθθ
(
2j(Z)

µ + iεµνρ∂
νj(R)ρ

)
+ · · · ,

J (Z) = J (Z) − 1

2
θγµSµ +

1

2
θγµSµ +

(
θγµθ

)
j(Z)
µ − iθθ Tµ

µ + · · · .

(5.14)

Here j(R)
µ is the R-current, Sαµ is the supersymmetry current, Tµν is the symmetric

energy-momentum tensor, and j(Z)
µ is the current associated with the central charge Z in

the supersymmetry algebra. The scalar J (Z) gives rise to a string current εµνρ∂ρJ (Z). All

of these currents are conserved.

It is convenient to express the real linear superfield J (Z) as a field strength,

J (Z) =
i

2
DDU ,

U = · · ·+
(
θγµθ

)
uµ − iθθJ (Z) − i

2
θ2θγµSµ +

i

2
θ
2
θγµSµ +

1

2
θ2θ

2
Tµ

µ .
(5.15)

Unlike J (Z), the superfield U is possibly not well defined. It can be shifted by gauge

transformations, U → U + Ω+ Ω, where Ω is chiral.

If the theory is superconformal the R-multiplet can be improved to satisfy (5.12)

with χα = 0.

Having the supercurrent multiplet, we can couple it to a supergravity background.

We now describe what one finds at the level of linearized supergravity for simplicity.

The idea is to couple the R-multiplet to the metric superfield Hµ,

δS = −2

∫
d3x

∫
d4θRµHµ . (5.16)

The supergravity gauge transformations are embedded in a superfield Lα,

δHαβ =
1

2

(
DαLβ −DβLα

)
+ (α↔ β) . (5.17)

Demanding gauge invariance of (5.16) leads to constraints,

DαD
2
Lα +D

α
D2Lα = 0 . (5.18)

In Wess-Zumino gauge, the metric superfield takes the form

Hµ =
1

2

(
θγνθ

)
(hµν − iBµν)−

1

2
θθCµ − i

2
θ2θψµ +

i

2
θ
2
θψµ +

1

2
θ2θ

2
(Aµ − Vµ) . (5.19)
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Here hµν is the linearized metric, so that gµν = δµν + 2hµν . The vectors Cµ and Aµ are

Abelian gauge fields, and Bµν is a two-form gauge field. The gravitino is ψµα .

For convenience we denote

Vµ = −εµνρ∂νCρ , ∂µVµ = 0

H =
1

2
εµνρ∂

µBνρ .
(5.20)

The fields Vµ and H are real in a unitary theory. We can now express the coupling (5.16)

in components,

δS = −
∫

d3x

(
Tµνh

µν − j(R)
µ

(
Aµ − 3

2
V µ

)
+ uµV

µ − J (Z)H

)
+ (fermions) . (5.21)

Since the gauge field Aµ couples to the R-current, we see that the gauge transforma-

tions (5.17) include local R-transformations. This supergravity theory is the three-

dimensional analog of N = 1 new minimal supergravity in four dimensions. As far as

I know nobody has really constructed the full nonlinear theory in three dimensions.

We can turn on various combinations of the background fields h,H, V, A. These de-

scribe general curved manifolds with extra fluxes, gauge bundles etc. Only a subset of the

possible fluxes preserves some amount of supersymmetry. The amount of supersymmetries

preserved is inferred from the number of spinors leaving the gravitino null.

If we turn on

gµν =
4r2

(r2 + x2)2
δµν , H = − i

r
, (5.22)

then we have four real supercharges preserved. This is a supersymmetric round three-

sphere. In addition to the metric which defines the ordinary sphere, here there is also flux

through the sphere.

One can readily find many of the couplings that need to be introduced on this sphere

to preserve supersymmetry via (5.21). Especially note the terms which go like 1/r due to

the coupling to the three form flux H.

It is especially interesting that H is imaginary. Hence, the resulting theories on S3

are not unitary. This is just the Euclidean version of the familiar statement that there is

no SUSY in dS space.

So why is it interesting to study them? First we observe that H is the only source

for non-unitarity on the three sphere. H couples to the operator J (Z) in the R-multiplet.

Hence when we put a superconformal field theory on the three sphere while preserving
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SUSY, there won’t be violation of unitarity. The idea is then to compute the partition

function of superconformal field theories. In doing this computation we will need to in-

troduce the regulator (actually a localizing term
∫
d3
√
g{Q, V }) and this would break

unitarity because this would not be conformal. But we are not afraid from unitarity vi-

olation in the regulator, after all, PV works quite well. More precisely, the violations of

unitary would have to be accounted for by counterterms, and we can always tune those to

restore unitarity.

Let us consider the simplest example of what has been discussed so far. We study a

single, free, chiral multiplet on S3. To linear order in 1/r we have explained how to find

the Lagrangian via our analysis of linearized supergravity. There are several approaches

to completing the construction

1. The Noether procedure: Add corrections which die off as 1/r2, whlie requiring that

one can preserve a consistent SUSY algebra in curved space. This has been done for

S3 but not for more general manifolds.

2. Start from full nonlinear supergravity with auxiliary fields and look for solutions where

the graviton fluctuations and gravitino can be set to zero consistently. This also has

not been fully explored yet. Especially that there is not yet an available nonlinear

new-minimal formalism in 3d.

For the free chiral multiplet, denote the R-charge of the bottom component, φ, by R.

Then one finds the action

S =

∫
d3x

√
g

(
(∂µφ)

2 + iψ†σµ∂µψ + F †F +
R − 1

2

r
ψ†ψ +

R(2−R)

r2
φ†φ

)
.

This is invariant under the transformation rules

δφ = 0 , δφ† = ψ†ε , δψ =

(
−iσµ∂µφ+

R

r
φ

)
ε ,

δψ† = εTF † , δF = εT
(
−iσµ∂µψ +

1
2 −R

r
ψ

)
, δF † = 0 .

As appropriate to curved space, here ε is a kind of a Killing spinor

∇µε =
i

2
γµε

and ε†ε = 1. Note that for R = 1/2 the term linear in 1/r disappears. This term breaks

unitarity because it is missing an i. This is the coupling to H we mentioned.
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One can add to this free chiral field any superpotential, such as W = φ4. This does

not modify the transformation rules and affects the Lagrangian only in the usual way (no

new r suppressed terms). In general, adding a superpotential constrains the choice of

R-symmetry. With W = φ4 we must choose R = 1
2 .

The theory above has an R-symmetry and it also has a global symmetry. Under the

global symmetry the chiral multiplet is assigned charge 1. It is very natural to couple this

theory to the background gauge multiplet – this can be viewed as a generating functional

for correlation functions of the current multiplet. A gauge multiplet in three dimensions

consists of real scalar σ, gauging λ, and gauge field Aµ, and a scalar field D.

The action generalizes to

S =

∫
d3x

√
g

(
(Dµφ)

2 + iψ†σµDµψ + F †F +
R− 1

2

r
ψ†ψ +

R(2−R)

r2
φ†φ

+φ†(σ)2φ+ iφ†Dφ− iψ†σψ +
2i

r

(
R− 1

2

)
φ†σφ+ gaugino terms

)
.

And the transformation rules

δφ = 0 , δφ† = ψ†ε , δψ =

(
−iσµDµφ− iσφ+

R

r
φ

)
ε ,

δψ† = εTF † , δF = εT
(
−iσµDµψ + iσψ +

1
2 −R

r
ψ + gaugino

)
, δF † = 0 .

An important thing to realize now is that if the background field σ obtains a VEV m,

then the fermions and bosons get a massm. This VEV for σ does not break supersymmetry,

in flat space. But in curved space the variation of the gauging is δλ =
(
−D − σ

m + · · ·
)
ε,

so when we turn on a VEV for σ we must also have a VEV for D, D = −σ/r ≡ m/r. This

preserves supersymmetry on the sphere. Such a mass is called a real mass term in three

dimensions.

We can compute the partition function of such supersymmetric theories on curved

space. Since the manifold is compact, the partition function is IR finite. The main claim

about such partition functions is that they are holomorphic in < σ > +iR
r

ZS3 = ZS3

(
〈σ〉+ i

R

r

)
.
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This is quite bizarre: there is holomorphy in the real masses and R charges. It is not

understood why this is the case from first principles. One can actually obtain analytic

forms for the partition function via localization, namely, there is some deformation

St = S + t

∫
{δ, V } .

that allows to localize on rather simple field configuration (e.g. in the φ4 theory mentioned

above).

Let us now study the consequences of this holomorphy. This means that

∂mZ = −ir∂RZ .

Now consider a conformal field theory, and choose the R-charge to be the superconformal

R-charge. Then ∂mZ is a one point function in this conformal field theory. Since S3 is

stereographically equivalent to R3, a one point function maps to a one point function in

R3 . In conformal field theories in flat space, all one-point functions besides that of the

unit operator vanish (the identity operator has a real VEV). This means that

∂m logZ = 0

Actually there is a subtlety in this equation because of some mixed flavor-gravitational CS

terms and the correct equation is

∂m logZ = real

Thus by the holomorphy equation

∂R|Z|2 = 0

We can write Z = e−F then,

∂Ri
|F | = 0 (5.23)

It is also conjectured that

∂Rj
∂Ri

|F | < 0 . (5.24)

There is not yet a compelling argument for that.

In general there is the superconformal R-symmetry but there are many U(1) global

symmetries too. Then we can build many effective R-symmetries. The equation above

means that the partition function is stationary w.r.t. derivatives in all these directions.
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Now imagine any flow. If there are no accidental symmetries in the IR conformal field

theory, then the amount of U(1) symmetries in the IR CFT is smaller than the number

of U(1) symmetries in the UV. Then, we are minimizing over a smaller space in the IR,

which means that

FUV > FIR

This argument has many flows but it applies in some class of theories:

A. It is not been proven that (5.24) is true at a conformal fixed point, but checked

empirically in many examples.

B. We are only talking about local minima, and for the argument above to hold we need,

for instance, the respective local minima to be actually global.

C. Accidental symmetries are commonplace and there is no a priori way to classify cases

when they arise and when they do not.
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