

2332-4

School on Synchrotron and FEL Based Methods and their Multi-Disciplinary Applications

19 - 30 March 2012

Time resolved and high pressure science

S. Pascarelli ESRF (France)

today

XAS, XANES, EXAPS, and XMCD

- X-ray Absorption
- X-ray Absorption Fine Structure
- Simple Theoretical Description
- XANES
- Major historical EXAFS breakthroughs
- Examples of applications at ELETTRA

Introduction to XMCD

Energy Dispersive XAS

X-ray Absorption Spectrometers

• EDXAS

- Basic principles, historical evolution
- Examples of applications at ESRF
- Future opportunities for studies of matter at extremes
- Probing laser induced extreme states of matter

Laser-induced extreme states of matter

- out-of-equilibrium states of matter
- matter at local thermal equilibrium (LTE)

European Synchrotron Radiation Facility

Out-of-equilibrium states of matter

- short-pulsed laser (~ fs): heat deposited at rate faster than the thermal expansion rate
- possible to prepare extreme states of solid matter at temperatures well above the normal melting point (strongly driven limit)
 - Visible or near visible laser light absorbed by $e \rightarrow very hot e in cool lattice$
 - Nuclear response determined by rate of energy transfer from excited e- to nuclei (~ ps)
 - Very high heating rates. $T \gg T_{melt}$ in few ps. Highly metastable state.

 \rightarrow interatomic forces can be altered

probe instantaneous effect of change in e- distribution on interatomic potential energy

Out-of-equilibrium states of matter

Phenomena for which the temperature of the electrons differs from that of the ions

- Can learn about how e⁻-e⁻, e⁻-ion and ion-ion interactions are altered
 - covalent systems: strong electronic excitation → lattice instabilities
 - metals: changes in screening \rightarrow bond weakening or hardening
- Experimental requirements
 - short laser pulses (~ fs)
 - fast probe (sub-ps)
 - thin samples (10-100 nm)
- Structural probes
 - mostly e- diffraction
 - some X-ray diffraction: sample thickness limitations, reflection geometry
 - soft X-ray XANES

Matter at local thermal equilibrium (LTE)

Long laser pulse (~ ns): allows energy transfer between e- and ions

- Heating occurs simultaneously to density changes: dynamic excitation used to generate equilibrium thermodynamical state along a Hugoniot equation
- Very high pressures can be generated (10-100 TPa possible)

Р	Internal energy $\Delta E \sim - P \Delta V$	Response
100 GPa	~1 eV outer bonding electrons	chemical bond profoundly changed
100 TPa	~1 keV core-electrons	new type of chemistry becomes accessible

study formation and properties of high density plasma

S. Pascarelli - FEL School, ICTP (Trieste) - March 22, 2012

European Synchrotron Radiation Facility

Warm Dense Matter

Zone in $\rho,$ T space where standard theories for condensed matter physics and statistical physics of plasmas are no longer valid

- Internal structure of giant planets (Jupiter, Saturn, Uranus, Neptune) determined by EoS of dense plasmas
- Radiative transfer in stars governed by opacities of transition metals (Fe)
- Applications in fusion reactions, extreme materials, ..

Warm Dense Matter: theoretical challenges

	$Coupling$ $\Gamma = \frac{Z^2 e^2}{akT}$	$Degeneracy$ $\theta \equiv \frac{kT}{\varepsilon_{F}}$	
ideal plasma high Τ, low ρ	Г « 1	θ >> 1	Non-degenerate electrons E _{coulomb} << E _{thermal}
warm dense matter	Г ~ 1	θ ~ 1	Ions strongly coupled Collective behaviour of particles Electrons partially degenerate
condensed matter	Г » 1	θ << 1	Degenerate electrons E _{thermal} << E _F

 \rightarrow No obvious small quantity to be used as perturbation parameter

Accurate experimental data required to test validity of models

European Synchrotron Radiation Facility

Probing laser-induced extreme states of matter

- out-of-equilibrium states of matter
- matter at local thermal equilibrium (LTE)

Examples: out-of-equilibrium studies

SAMPLE	PUMP Optical laser	PROBE	Subject
30nm Si Xtal Si polyXtal	387 nm 150 fs 65 mJ/cm ²	Electron diffraction 200 fs	dynamics of melting
20nm Al polyXtal	775 nm 120 fs 70 mJ/cm²	Electron diffraction 600 fs	dynamics of melting
20nm Au polyXtal	387 nm 200 fs 110 mJ/cm ²	Electron diffraction 40 fs	dynamics of melting
70 nm Cu polyXtal	387 nm 150 fs 330 mJ/cm ²	ALS undulator XANES 2 ps	electronic structure in warm dense Cu

Laser induced melting in Si

- at high fluence dynamics not explained by thermal relaxation mechanism
- possible mechanism: large portion of valence e- promoted by single photon absorption across direct band gap (~ 11 % at 65 mJ/cm²)

\rightarrow covalent bond weakens

 \rightarrow electronically induced phase transition

Harb PRL 2008

Laser induced melting in Al

transition complete at 3.5 ps, melting dynamics compatible with thermal disordering

 \rightarrow thermally induced phase transition

- fast hot electron energy redistribution into phonons: T_{melting} reached in < 0.8 ps</p>
- at 1.5 ps, T_{lattice} ~ 1.5 T_{melting}
 - \rightarrow superheated metastable state

Siwick Science 2003

• rise of liquid structure factor is delayed $\Delta t = 1.4$ ps compared to DS and 220 dynamics

 \rightarrow thermally induced phase transition

rate of disordering retarded w/respect to degree of lattice heating

 \rightarrow superheated metastable state

• results can be explained with T_e - dependent Debye Temperature \rightarrow lattice hardening Ernstorfer Science 2009

Laser induced melting: DFT calculations

- Effect of laser illumination on structural stability of lattice
 - few fs after illumination immediately after electrons have reached their equilibrium T_e
 - ions not yet responded to T increase \rightarrow density unchanged

phonon spectrum

covalent bonding

- TA mode becomes unstable for $T_e > 1.5 \text{ eV}$
- Inttice instability induced by e⁻ thermal excitation

metallic bonding

- Au: steepening of phonon dispersion, hardening of lattice
- Al: ion-ion interaction unaffected by T_e

Recoules PRL 2006

Investigating laser induced melting by XAS?

What additional information can XAS provide?

- Fully resolve the relative atomic motions during the melting process
- Local structure in the superheated and in the liquid phase
- Covalent systems (non-thermal melting)
 - effects of valence electron promotion on electronic structure
 - dynamics of electronically driven phase transition
- Metals (thermal melting)
 - electronic structure in highly superheated metastable phase
 - force constants from mean square relative displacements
- Experimental difficulties
 - thickness limitations (some work with soft x-rays)
 - transmission vs reflection geometry

Probing laser-induced extreme states of matter

- out-of-equilibrium states of matter
- matter at local thermal equilibrium (LTE)

European Synchrotron Radiation Facility

XANES on Warm Dense AI (LTE)

PRL 104, 035002 (2010) PHYSICAL REVIEW LETTERS

week ending 22 JANUARY 2010

Picosecond Short-Range Disordering in Isochorically Heated Aluminum at Solid Density

 A. Mančić,¹ A. Lévy,² M. Harmand,² M. Nakatsutsumi,¹ P. Antici,^{3,4} P. Audebert,¹ P. Combis,⁵ S. Fourmaux,⁶ S. Mazevet,⁵ O. Peyrusse,² V. Recoules,⁵ P. Renaudin,⁵ J. Robiche,^{1,*} F. Dorchies,² and J. Fuchs^{1,†}
 ¹LULI, École Polytechnique, CNRS, CEA, UPMC, route de Saclay, 91128 Palaiseau, France
 ²Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), Talence, F-33405, France
 ³ILE-École Polytechnique-CNRS-ENSTA-Iogs-UP Sud, Batterie de l'Yvette, 91761 Palaiseau, France
 ⁴Istituto Nazionale di Fisica Nucleare, Via E. Fermi, 40-00044 Frascati, Italy
 ⁵CEA, DAM, DIF, F-91297 Arpajon, France
 ⁶INRS-Energie et Matériaux, 1650 BD. L. Boulet, J3X1S2 Varennes, Québec, Canada (Received 5 October 2009; published 20 January 2010)

First combination of XANES and ab-initio calculations on warm dense Al

- Pulsed proton beam heats isochorically and uniformly 1.6 µm Al foil over 25 ps
- Ultrashort (~ 4 ps) X-ray pulse backlights sample
- X-ray spectrometer (2 diffractive crystals) allows simultaneous measurement of I₀ and I₁

XANES on Warm Dense AI (LTE)

QMD + DFT on Al

S. Pascarelli - FEL School, ICTP (Trieste) - March 22, 2012

European Synchrotron Radiation Facility

QMD + DFT on Al: along the Hugoniot

Experimental data falls in-between theoretical predictions at high density Mazevet PRL 2008

European Synchrotron Radiation Facility

UPBL11: perspectives for WDM studies

X-ray source	UPBL11 parameters	New experimental capacity
Brightness	10 ⁶ - 10 ⁷ photons / 100ps bunch 3 x 3 μm² (FWHM)	sample volume: 10 ⁻⁶ cm ³ i.e. warm dense Fe: laser power < 1 J
Energy tunability	5 - 30 keV	K-edges between Ti and In L-edges between Te and U
Bandwidth of polychromatic beam	DE/E > 10 %	Absorption edges XANES EXAFS

X-ray-optical laser interfacing using table-top transportable lasers (1 J)
Access to large portion of periodic table (i.e. all 3d, 4d and 5d metals)

Outlook

	heterogeneous catalysis ms cleaner chemical processes emission free vehicles new energy resources P > 100 GPa; T > 3000 K melts local order electronic structure
D P	ushing the limits of XAS to the extremes
	ery challenging and exciting future
	ots of young and bright scientists needed
	magnetostriction, piezoelectricity reversible H_2 storage processes energy-driven magnetic materials warm dense matter reversible H_2 storage processes lenergy-driven magnetic materials reversible H_2 storage processes energy-driven magnetic materials