	The Abdus Salam International Centre for Theoretical Physics
--	---

2332-11

School on Synchrotron and FEL Based Methods and their Multi-Disciplinary Applications

19 - 30 March 2012

Inelastic x-ray scattering: principles and applications

Filippo Bencivenga Elettra, Trieste - Italy

Inelastic x-ray scattering: principles and applications

Filippo Bencivenga

OUTLINE

Introduction

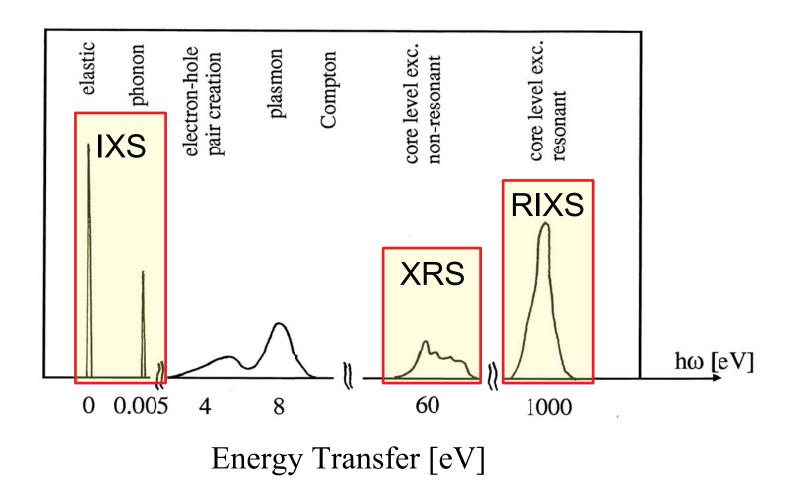
High resolution inelastic x-ray scattering (IXS)

- Collective atomic dynamics
- Neutrons vs. X-rays
- Basic theory and instrumentation
- Experimental highlights

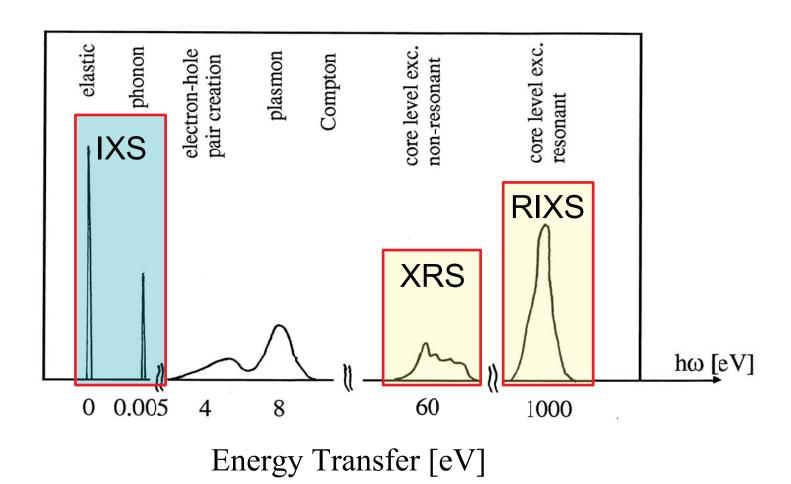
Inelastic x-ray "Raman" scattering (XRS)

- Experimental/theoretical aspects
- Scattering vs. absorption spectroscopy
- Experimental highlights

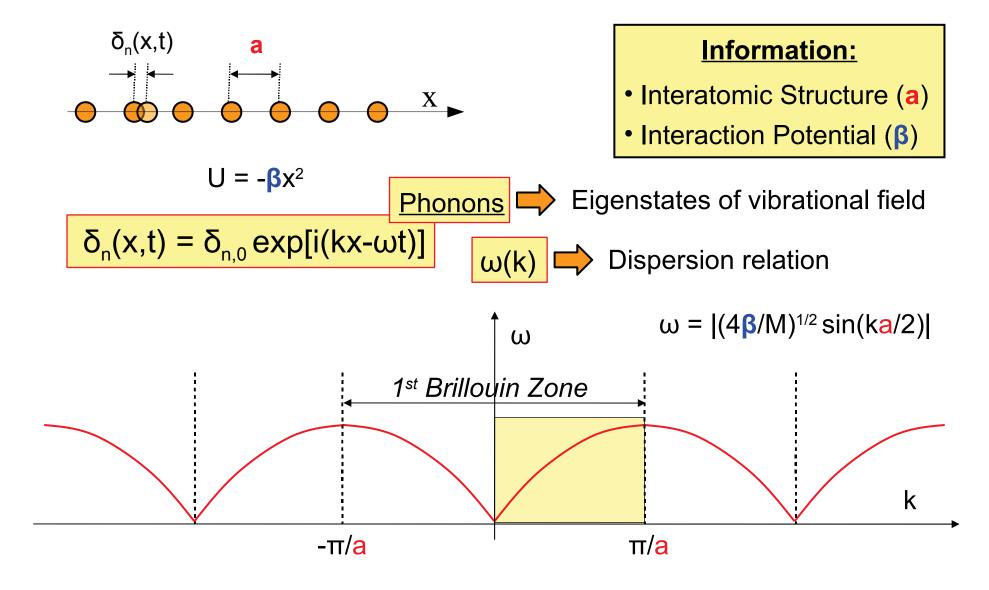
Introduction: inelastic X-ray spectrum



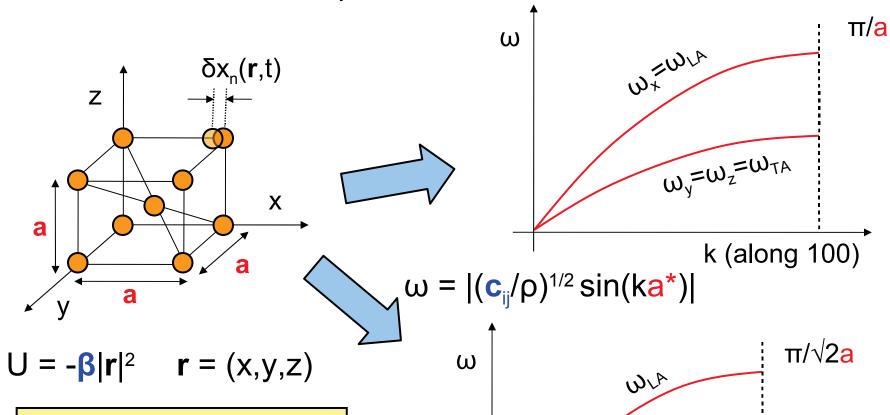
high-resolution Inelastic X-ray Scattering (IXS)



The simpler case

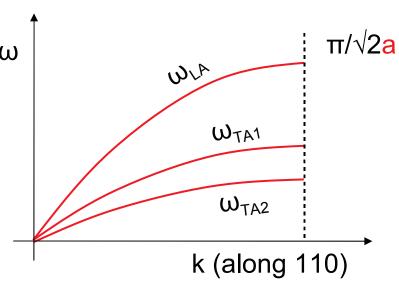


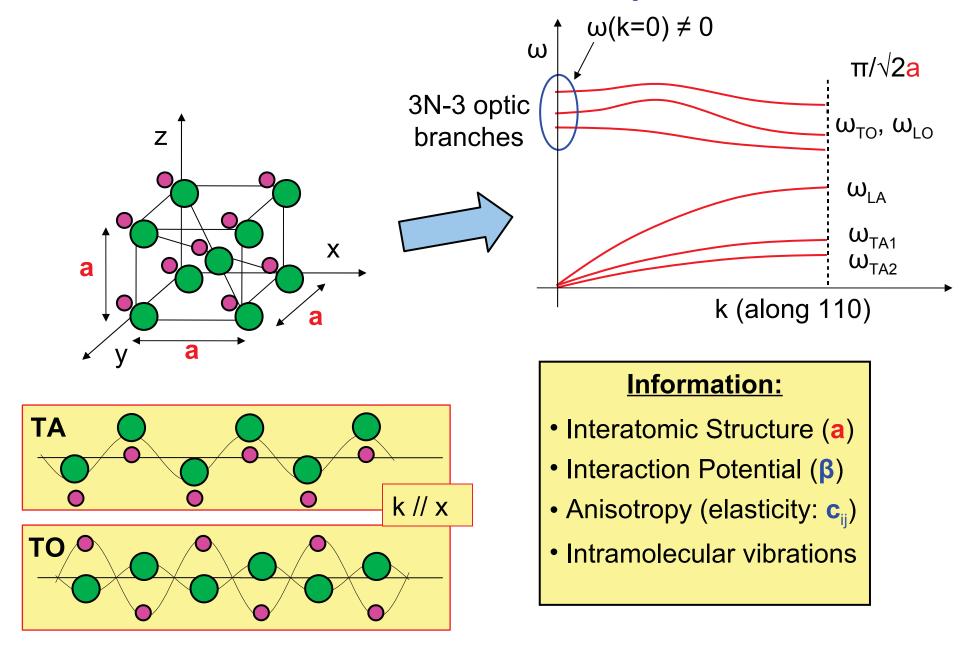
One step forward: 3D lattice



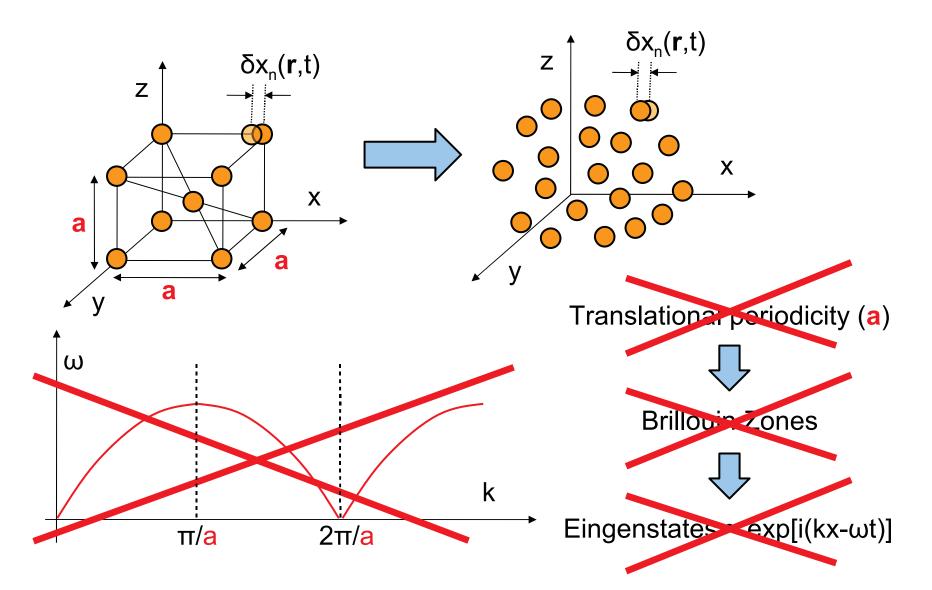
Information:

- Interatomic Structure (a)
- Interaction Potential (β)
- Anisotropy (elasticity: c_{ii})

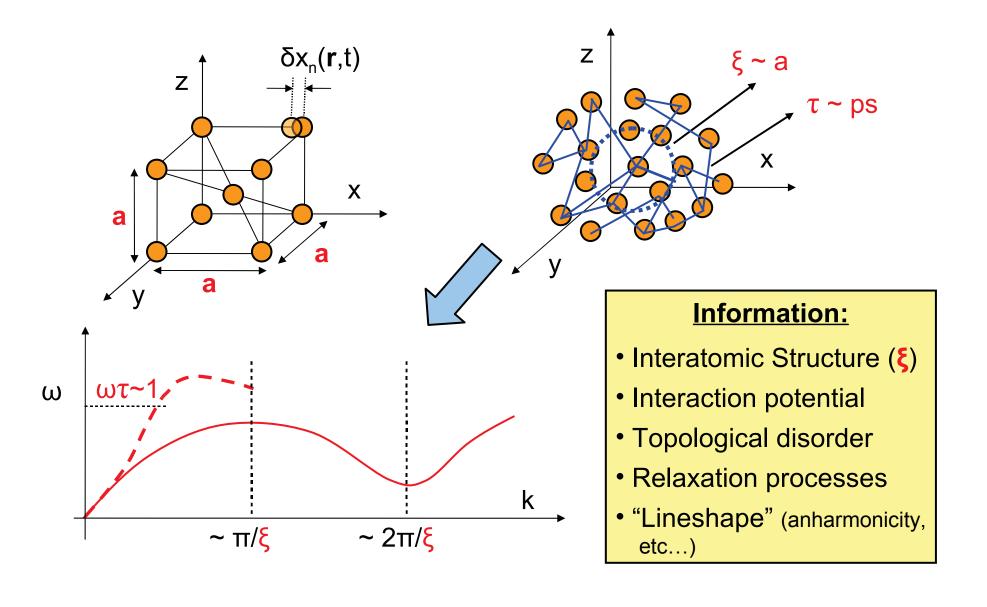




The most complex case: disordered systems

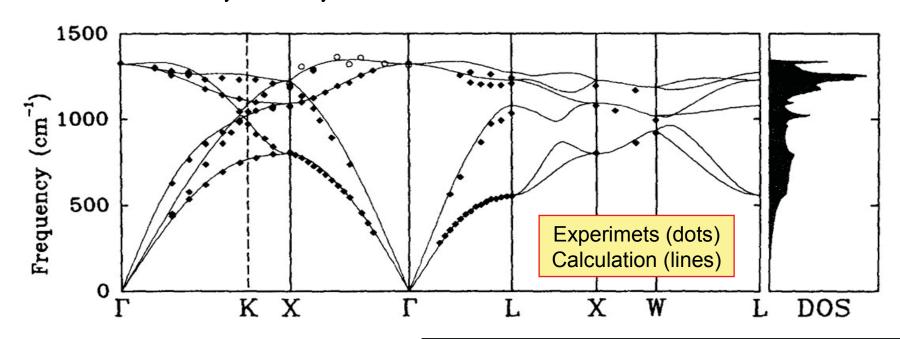


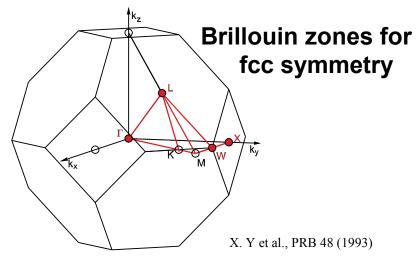
The most complex case: disordered systems



An example...

Diamond: fcc symmetry + 2 C atoms each lattice site $@ \pm(\frac{1}{4},\frac{1}{4},\frac{1}{4})$





Information:

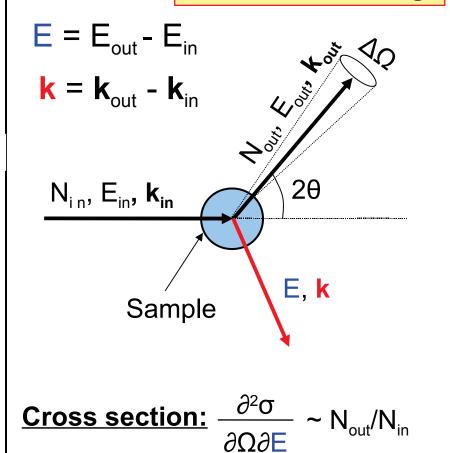
- **Structure** and **Elasticity** (sound velocities)
- Interaction potential and Anharmonicity
- **Dynamical istabilities** (phonon softening)
- Electron-phonon coupling
- Thermodynamics $(c_V, \lambda, \Theta_D, S_D, \text{ etc } ...)$

How can we measure Atomic Dynamics?



- Inelastic Light Scattering (Brillouin & Raman)
- Ultrasonics
- Transient Grating
- Etc ...

- Probe wavelenght $(2\pi/|\mathbf{k}|) < 0.1 \text{ nm}$
- Probe energy (E) > 30÷100 meV



VS.

X-rays

$$\lambda_{in} = 1 \text{Å}$$

$$\lambda_{in} = 1 \text{Å}$$
 \rightleftharpoons $E_{in} = 82 \text{ meV}$

$$\lambda_{in} = 1 \text{Å}$$
 \Longrightarrow $E_{in} = 12.4 \text{ keV}$

$$E > 4 \text{ meV} \rightarrow \Delta E/E_{in} = 0.05$$

 $E > 4 \text{ meV} \rightarrow \Delta E/E_{in} = 3.10^{-7}$

Moderate energy resolution

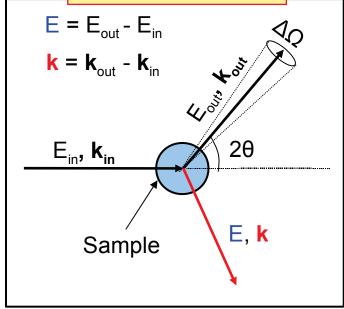
Very high energy resolution

100 INS instruments

Spin sensitive

Better contrast

"Older" technique



4 IXS instruments

Why X-rays?

VS.

X-rays

$$\lambda_{in} = 1 \text{Å} \implies E_{in} = 82 \text{ meV}$$

$$\lambda_{in} = 1 \text{Å} \implies E_{in} = 12.4 \text{ keV}$$

$$E_{out} \neq E_{in}$$

$$|\mathbf{k}|^{2} = 1 - E/E_{in} + \cos(2\theta)(1 - 2E/E_{in})^{1/2}$$

$$|\mathbf{k}| = 2|\mathbf{k}_{in}|\sin(\theta)$$

$$|\mathbf{k}| = 2|\mathbf{k}_{in}|\sin(\theta)$$

$$|\mathbf{k}| = 30^{\circ}$$

VS.

X-rays

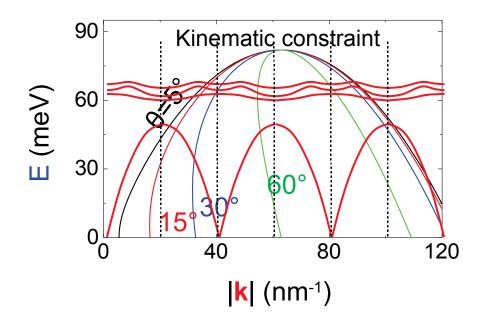
$$\lambda_{in} = 1 \text{Å} \implies E_{in} = 82 \text{ meV}$$

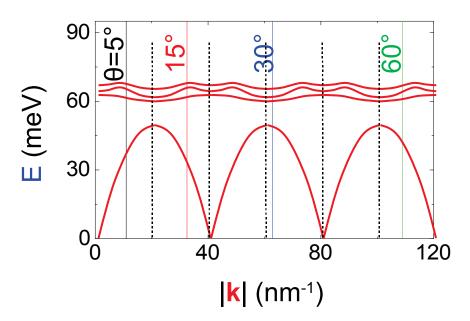
$$\lambda_{in} = 1 \text{Å} \implies E_{in} = 12.4 \text{ keV}$$

$$E_{out} \neq E_{in}$$

$$E = E_{out} - E_{in} \text{\& } \mathbf{k} = \mathbf{k}_{out} - \mathbf{k}_{in}$$

$$|\mathbf{k}|^2 = 1 - E/E_{in} + \cos(2\theta)(1 - 2E/E_{in})^{1/2}$$





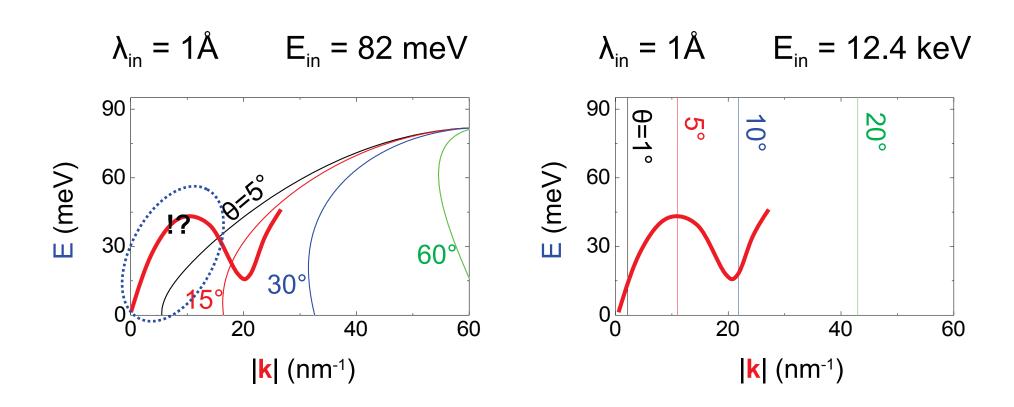
VS.

X-rays

Inelastic excitations in disordered systems

Neutrons

X-rays



VS.

X-rays

$$\lambda_{in} = 1 \text{Å}$$

$$\lambda_{in} = 1 \text{Å}$$
 \Longrightarrow $E_{in} = 82 \text{ meV}$

$$\lambda_{in} = 1 \text{Å}$$
 \Longrightarrow $E_{in} = 12.4 \text{ keV}$

$$E > 4 \text{ meV} \rightarrow \Delta E/E_{in} = 0.05$$

 $E > 4 \text{ meV} \rightarrow \Delta E/E_{in} = 3.10^{-7}$

Moderate energy resolution

Very high energy resolution

100 INS instruments

Spin sensitive

No kinematical constraints

(Disordered systems)

3 IXS instruments

Why

X-rays?

(small samples: high pressure, exotic materials, etc...)

No incoherent cross section

Better contrast

"Older" technique

Basic theoretical aspects

$$H_{int} = (e/m_e c) \sum_j [(e/2c) \mathbf{A}_j \cdot \mathbf{A}_j + \mathbf{A}_j \cdot \mathbf{p}_j + magnetic]$$

A is the vector potential of electromagnetic field
p is the momentum operator of the electrons
j is the summation over all electrons of the system

1st order perturbation theory

A-A term --> one photon (non-resonant) scattering

$$\frac{\partial^2 \sigma}{\partial \Omega \partial F} = r_0^2 (\epsilon_{in} \cdot \epsilon_{out})^2 (k_{in}/k_{out}) \sum_{l} P_{l} |\langle l| \exp\{i \mathbf{k} \cdot \mathbf{r}_{j}\} |F\rangle|^2 \delta(E - E_{out} + E_{in})$$

Basic theoretical aspects

$$\frac{\partial^2 \sigma}{\partial \Omega \partial E} = r_0^2 (\mathbf{\epsilon}_{in} \cdot \mathbf{\epsilon}_{out})^2 (\mathbf{k}_{in} / \mathbf{k}_{out}) \sum_i P_i |\langle \mathbf{I} | \exp\{i \mathbf{k} \cdot \mathbf{r}_j\} | F \rangle |^2 \delta(E - E_F + E_I)$$

The key assumption:

Adiabatic approximation \rightarrow $|I\rangle=|I_n\rangle|I_e\rangle$ and $|F\rangle=|F_n\rangle|F_e\rangle$

cross section

$$\frac{\partial^2 \sigma}{\partial \Omega \partial E} = r_0^2 (\epsilon_{\text{in}} \cdot \epsilon_{\text{out}})^2 (k_{\text{in}}/k_{\text{out}}) F(|\mathbf{k}|)^2 S(\mathbf{k}, E)$$

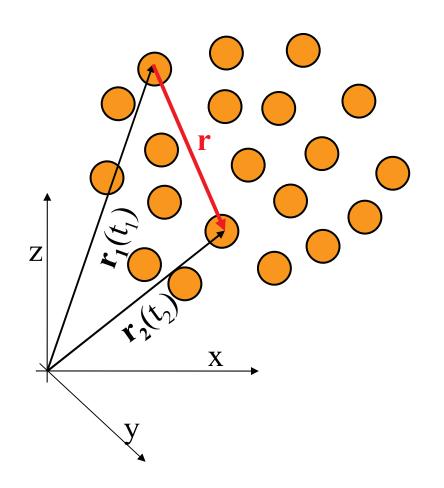
$$\text{Molecular form factor } (|I_e\rangle, |F_e\rangle)$$

$$\text{Thomson scattering}$$

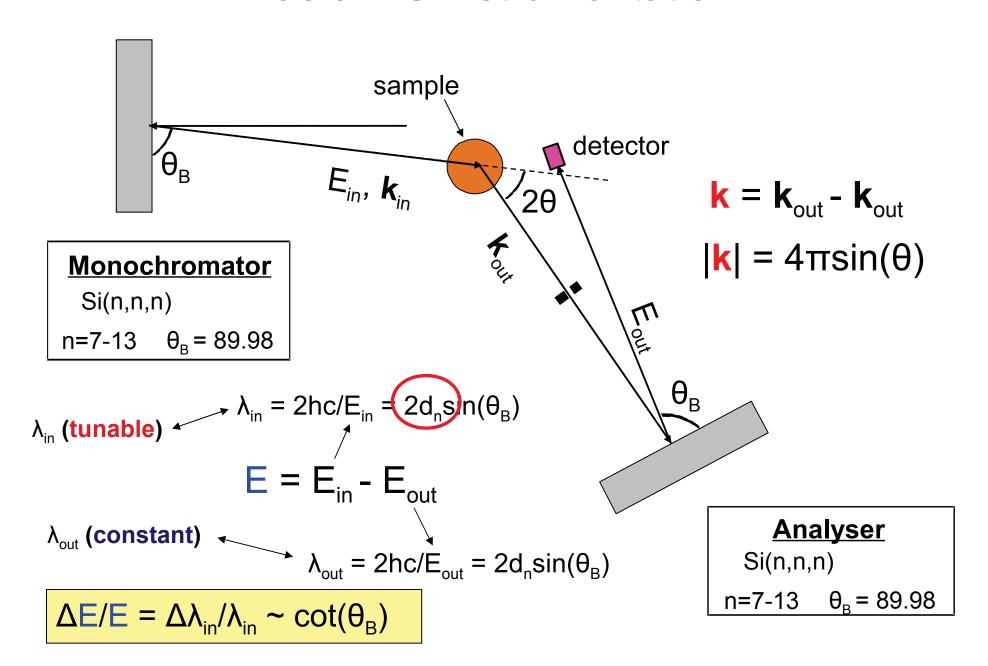
$$\text{Dynamic structure factor}$$

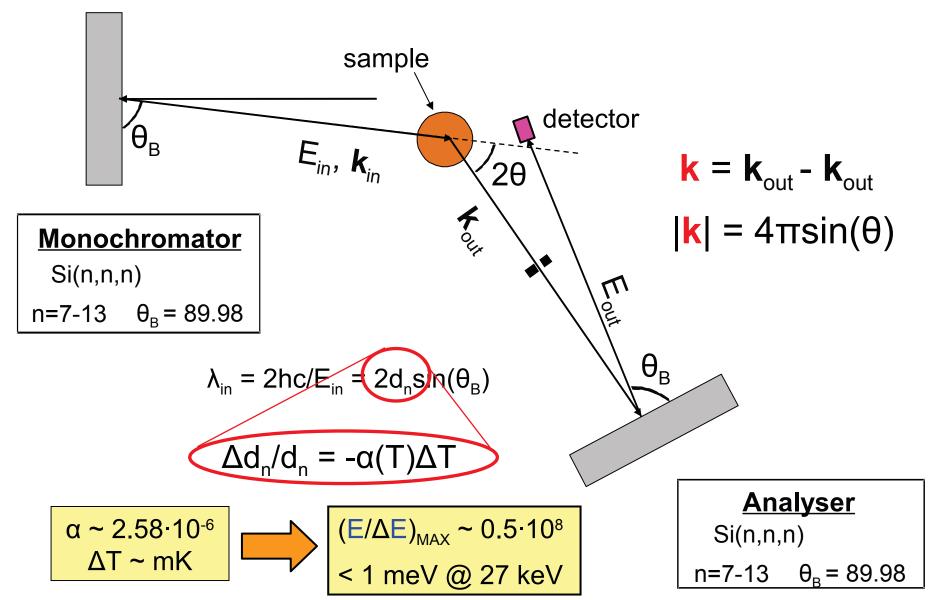
The dynamic structure factor

S(k,E) is the **SPACE** and **TIME** Fourier transform of G(r,t)



 $G(\mathbf{r},\mathbf{t})$ is the probability to find two distinct particles at positions $\mathbf{r}_1(t_1)$ and $\mathbf{r}_2(t_2)$, separated by the distance $\mathbf{r}=\mathbf{r}_2-\mathbf{r}_1$ and the time interval $\mathbf{t}=\mathbf{t}_2-\mathbf{t}_1$.





R. Verbeni et al., XXX ??? (1996)

detector

 θ_{B}

Monochromator

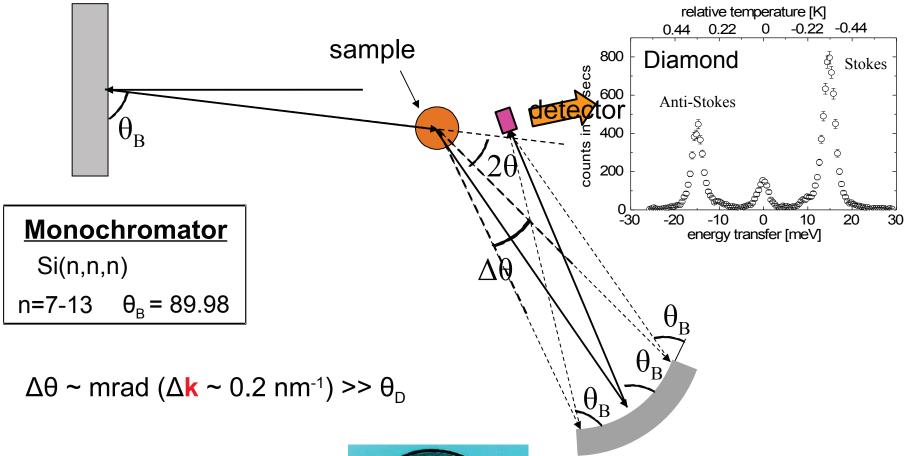
Si(n,n,n)

n=7-13 $\theta_B = 89.98$

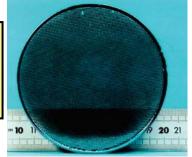
 $\Delta\theta \sim \text{mrad} (\Delta \mathbf{k} \sim 0.2 \text{ nm}^{-1}) >> \theta_D$

Si(n,n,n)

n=7-13 $\theta_B = 89.98$



≈ 12000 flat Si "perfect" single crystals (0.6x0.6 mm²) that approximate a spherical surface

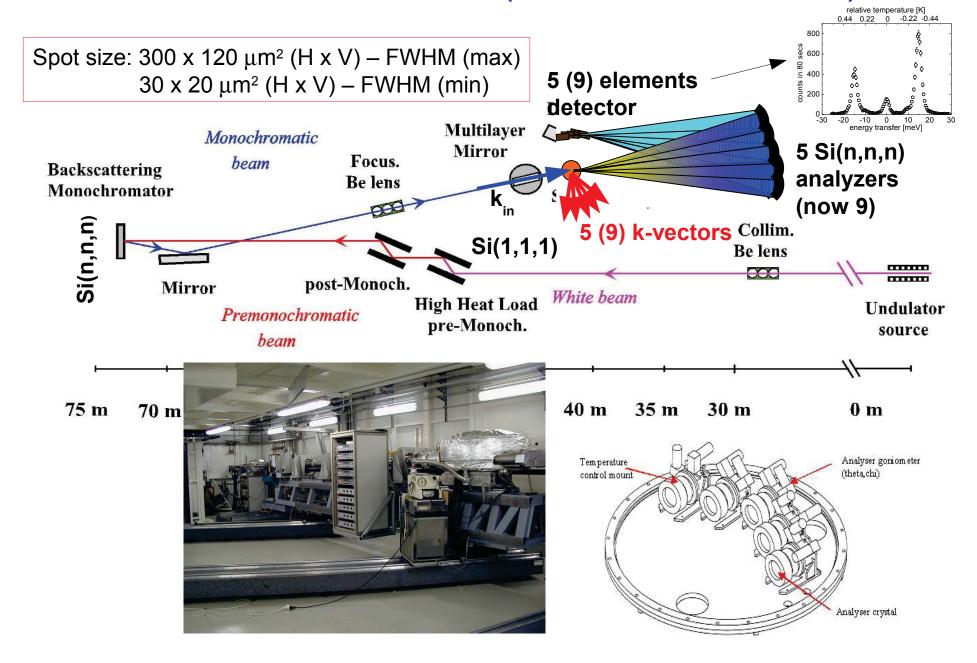


Analyser

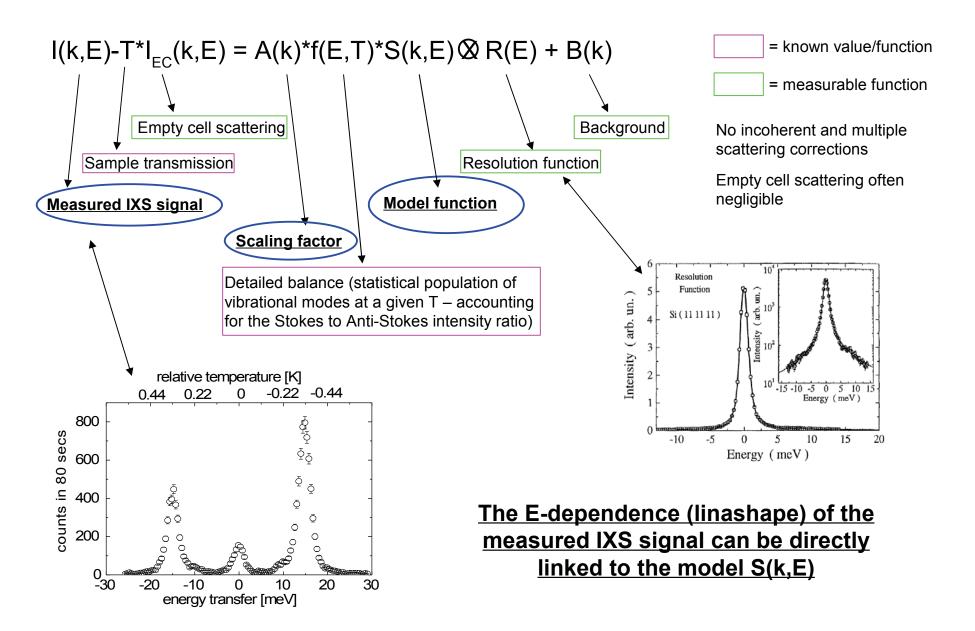
Si(n,n,n)

n=7-13 $\theta_{B} = 89.98$

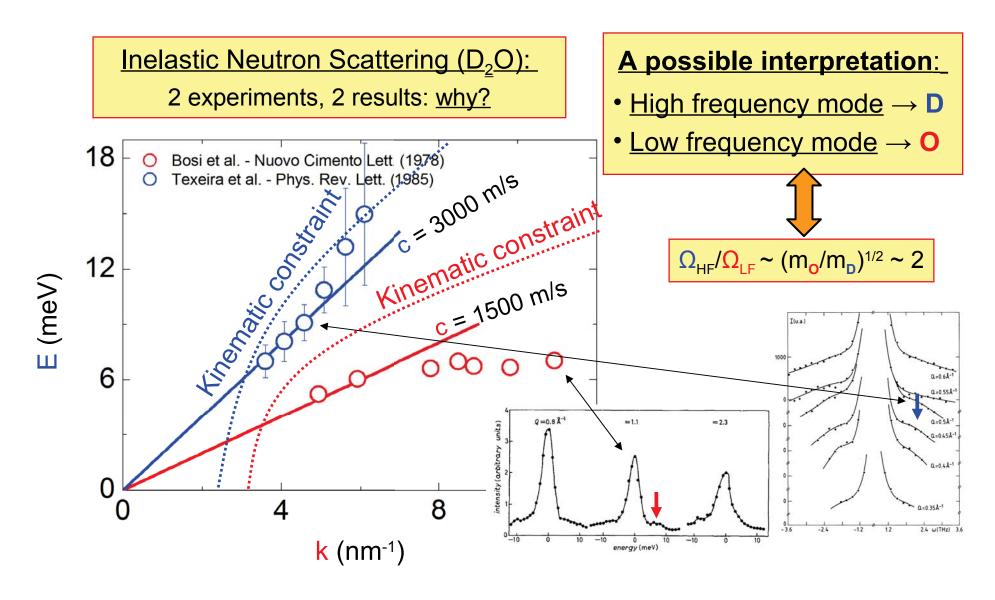
ID-28 at the ESRF (Grenoble, France)

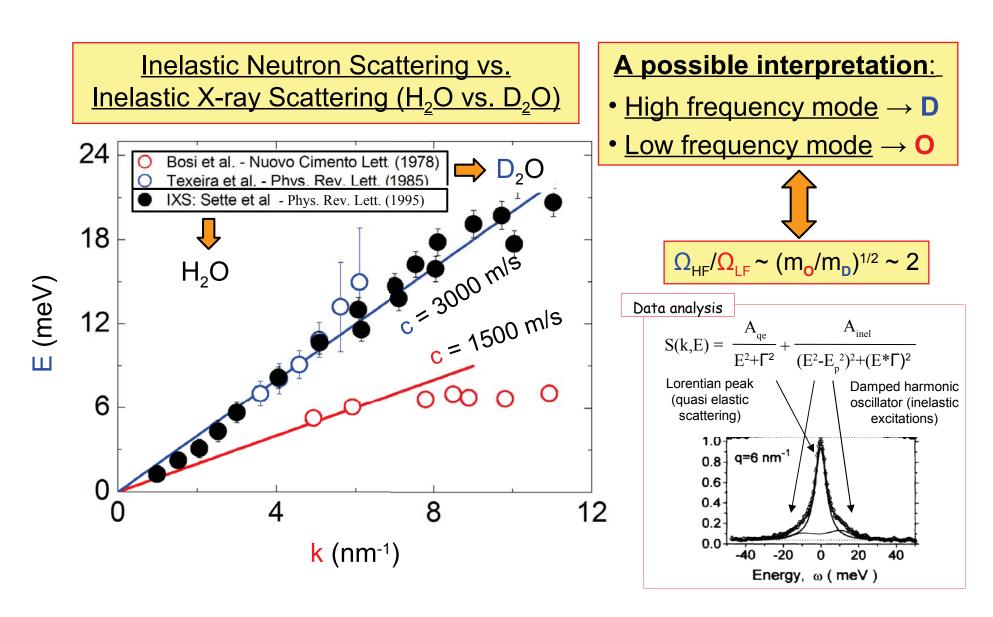


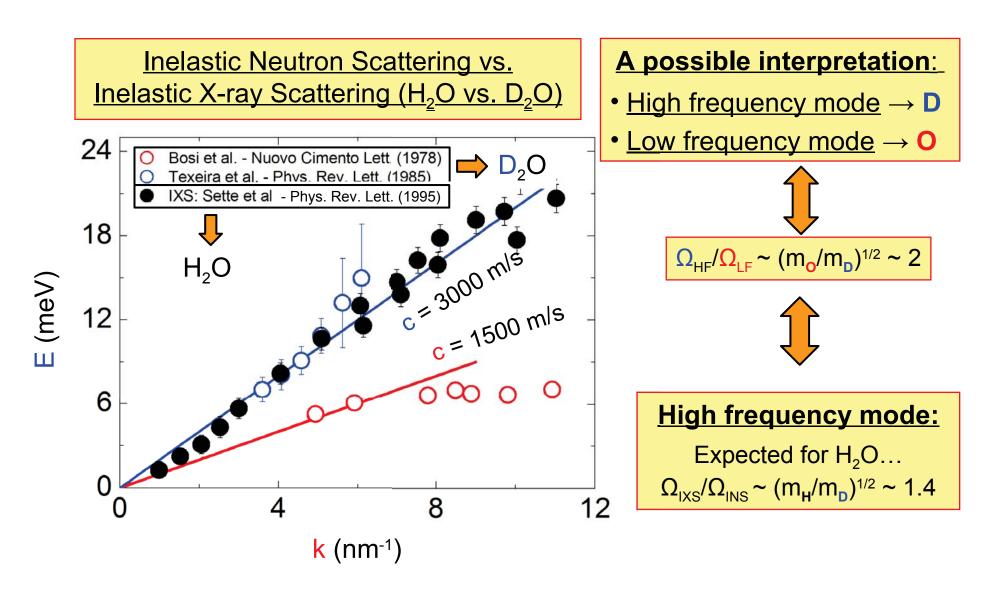
Data Analysis

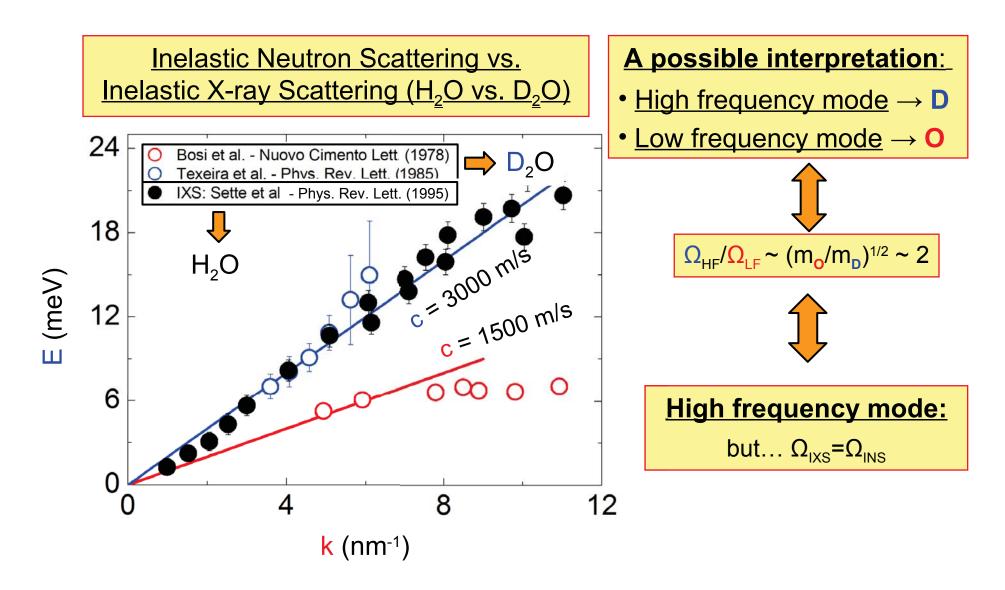


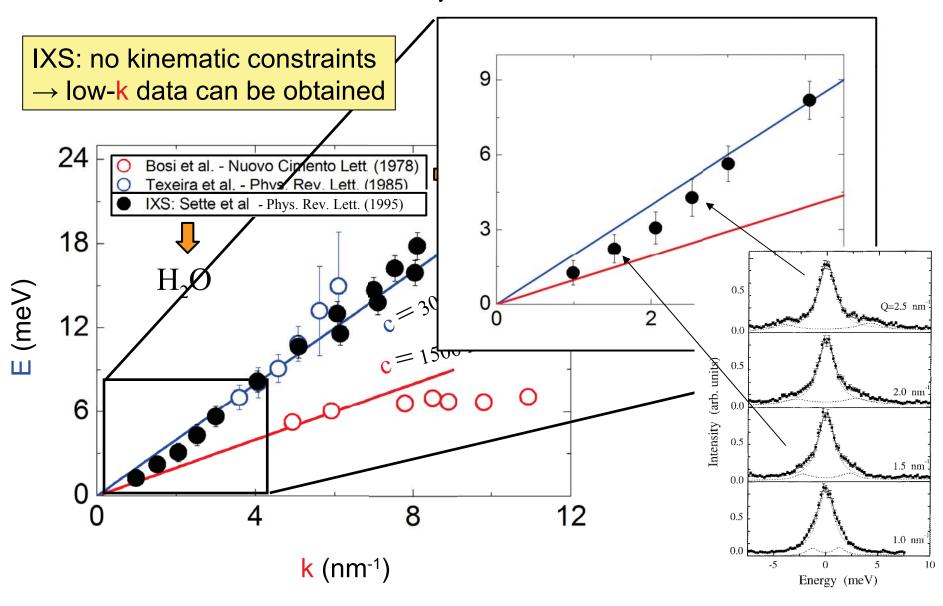
Collective dynamics in water (IXS to overcome kinematic constraints)



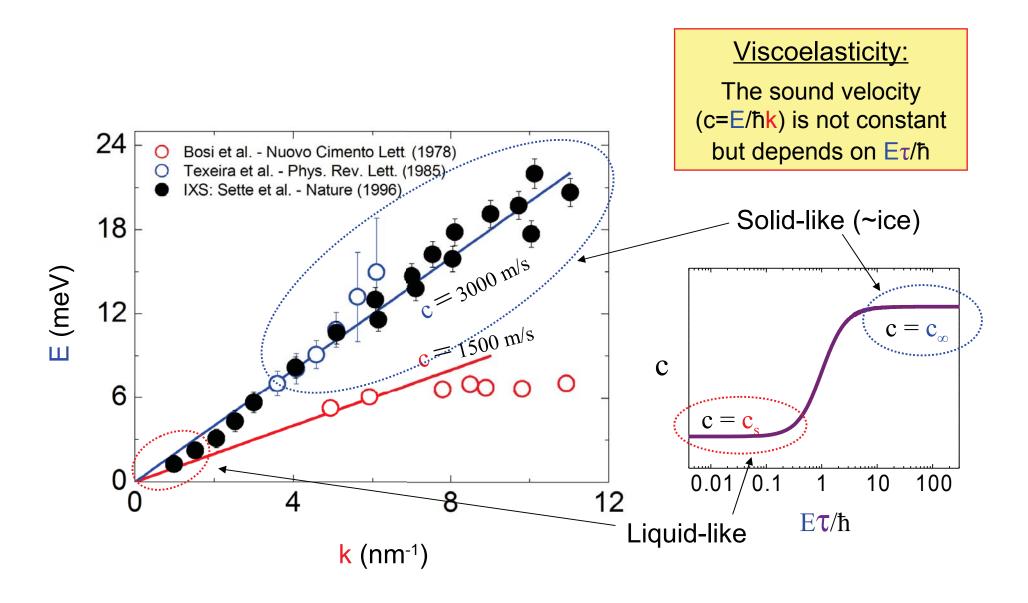








Collective dynamics in water (viscoelasticity)



Collective dynamics in water (viscoelasticity)

Information we can get from each spectrum:

- 1) High and low frequency sound velocity (c_{inf} and c_{0})^{a,b}
- 2) High/low frequency damping (lifetime) of inelastic excitations $^{a,b} \rightarrow \text{Viscosity/anhrmonicity/local disorder}$
- 3) Relaxation time $^{a,b} \rightarrow \text{hints}$ on the physical processes responsible for the viscoelatic transition
- 4) Thermal properties (heat diffusion, specific heat)^b
- 5) Characteristic energy of inelastic excitations (from the peak energy of the function $J_{1}(k,E)=E^{2}S(k,E))^{a,b}$

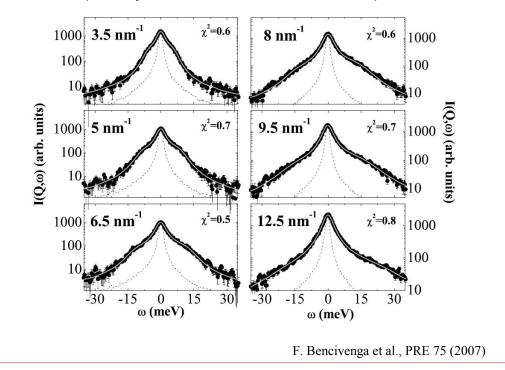
9 ~ħ/τ 3 ~ħ/τ 0 2 4 ~ħ/τ k (nm-1)

Data analysis

Viscoelastic model function

$$S(k,E) = A_{inel} \frac{E_0^2(k) * m'(k,E)}{[E^2 - E_0^2(k) - E * m''(k,E)]^2 + [E * m(k,E)]^2}$$

m'(k,E) and m"(k,E) are the real and imaginary part of the FT of memory function, respectively related with viscous and elastic response of the fluid.



Collective dynamics in water (viscoelasticity)

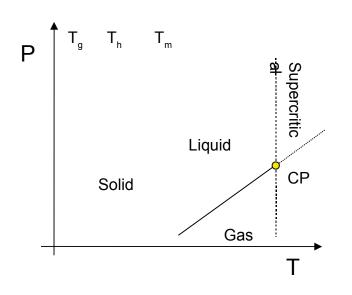
Information we can get from each spectrum:

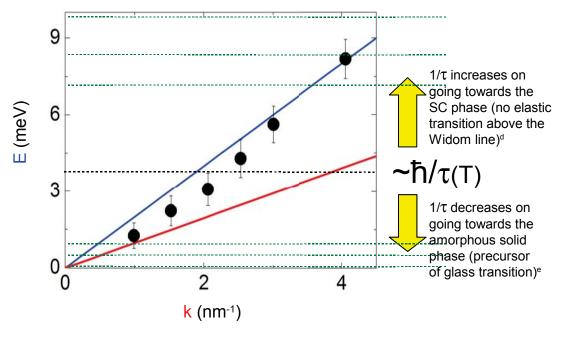
- 1) High and low frequency sound velocity (c_{inf} and c_n)^{a,b}
- 2) High/low frequency damping (lifetime) of inelastic excitations $^{a,b} \rightarrow \text{Viscosity/anhrmonicity/local disorder}$
- 3) Relaxation time^{a,b} \rightarrow hints on the physical processes responsible for the viscoelatic transition
- 4) Thermal properties (heat diffusion, specific heat)^b
- 5) Characteristic energy of inelastic excitations (from the peak energy of the function $J_1(k,E)=E^2S(k,E))^{a,b}$

 c_0 vs (P,T, ρ) = adiabatic sound velocity (classical hydrodynamics)^{a,b,c} $c_{inf} \sim$ sound velocity in glassy/crystalline water (elastic medium)^{a,b}

Low frequency damping vs (P,T,ρ) proportional to viscosity (class. hydrod.)^{a,b,c} High frequency damping as in glassy water (elastic medium)^{a,b}

Arrhenius temperature dependence (τ =const*exp{ E_a/k_BT }) in the liquid phase^{a,b,c}; ~ constant in the supercritical phase^b; "diverging" (vs T) in the supercooled liquid phase (only by IUVS data)^c.

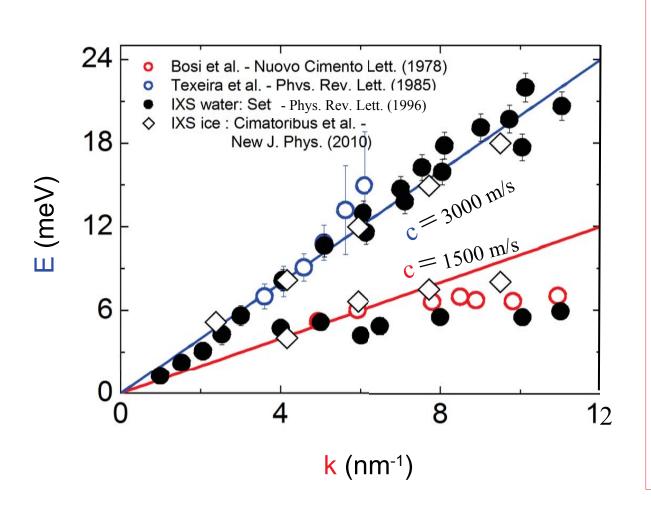




- a) G. Monaco et al., PRE 60 (1999) constant density vs T (liquid)
- b) F. Bencivenga et al., PRE 75 (2007) vs density and T (liquid and SC)
- c) C. Masciovecchio et al., PRL 92 (2004) vs T (IUVS data, supercooled)

- d) G.G. Simeoni et al., Nat. Phys. 6 (2010).
- e) IXS experiments on various glass formers → F. Sette et al., Nature 280 (1998); T. Scopigno et al., Science 302 (2003)

Collective dynamics in water (transverse mode)



Data analysis

Lorentian peak (quasi elastic scattering) plus two damped harmonic oscillator (DHO) functions (two pairs of inelastic peaks) – 1.5 meV resoultion

$$S(k,E) = \frac{A_{qe}}{E^{2} + \Gamma^{2}} + \frac{A_{HF}}{(E^{2} - E_{HF}^{2})^{2} + (E^{*}\Gamma_{HF})^{2}} + \frac{A_{LF}}{(E^{2} - E_{LF}^{2})^{2} + (E^{*}\Gamma_{LF})^{2}}$$

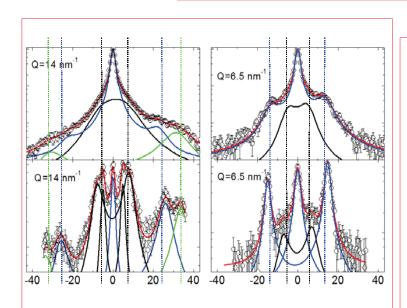
$$Q=4.0 \text{ nm}^{-1}$$

$$Q=4.0 \text{ nm}^{-1}$$

$$O=4.0 \text{ nm}$$

Collective dynamics in water (transverse mode)

Improving experiments and data analysis...

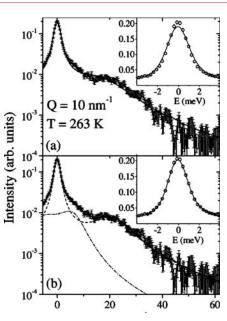


Experiment → High-pressure (3 kbar) and low-T (down to the supercooled liquid phase) for one-to-one comparison with (polycrystalline) ice

Analysis → Viscoelatic model function (quasi elastic and HF peaks) + DHO function (LF peak and the "new" HF peak)

Results → Observed in water a "new" inelastic peak (also present in ice) at frequency higher than those of the "old" HF mode and due to a L-T mixing (in agreement with simulations)

A. Cimatoribus et al., New J. Phys. 12 (2010)



Analysis → Viscoelatic model (HF and quasi elastic peaks) + DHO function (LF peak)

 $\begin{array}{c} \text{Main result} \rightarrow \text{LF peak shows up in} \\ \text{the elastic side of the} \\ \text{viscoelastic transition} \end{array}$

E. Pontecorvo et al., PRE 71 (2005)

Data analysis

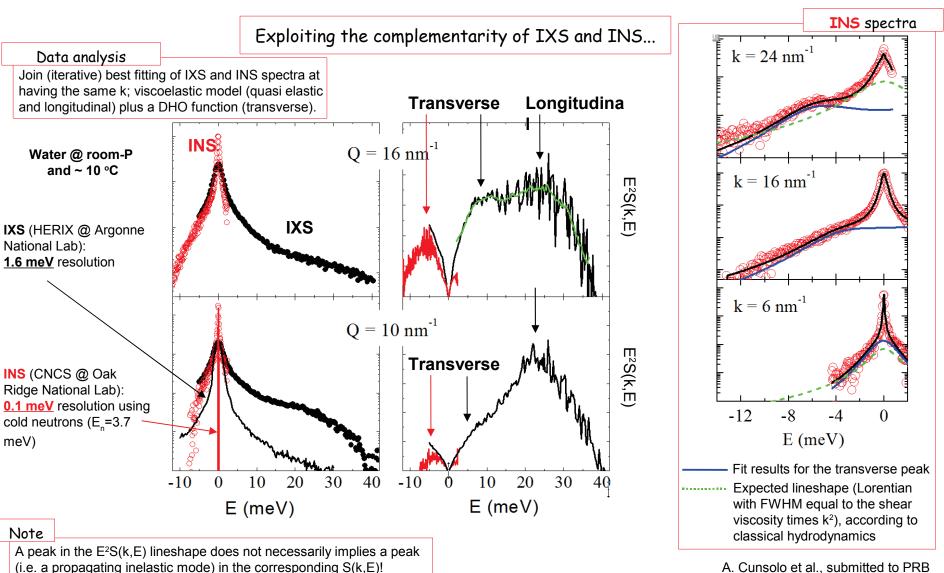
Lorentian peak (quasi elastic scattering) plus two damped harmonic oscillator (DHO) functions (two pairs of inelastic peaks) – 1.5 meV resoultion

$$S(k,E) = \frac{A_{qe}}{E^{2} + \Gamma^{2}} + \frac{A_{HF}}{(E^{2} - E_{HF}^{2})^{2} + (E^{*}\Gamma_{HF})^{2}} + \frac{A_{LF}}{(E^{2} - E_{LF}^{2})^{2} + (E^{*}\Gamma_{LF})^{2}}$$

$$Q=4.0 \text{ nm}^{-1}$$

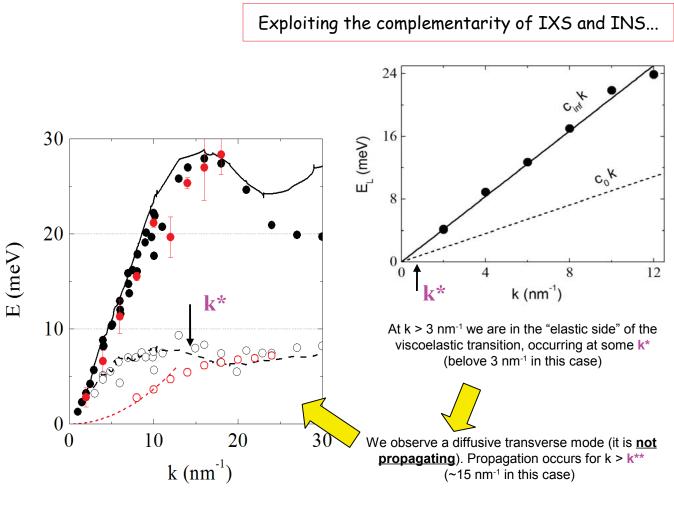
F. Sette et al., PRL 77 (1996)

Collective dynamics in water (transverse mode)

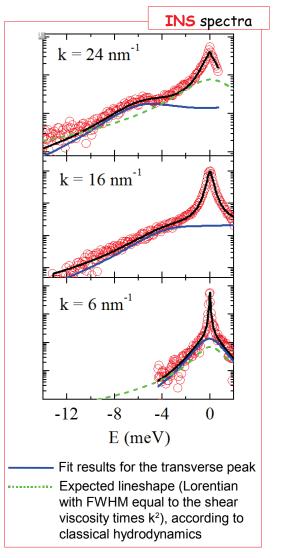


A. Cunsolo et al., submitted to PRB

Collective dynamics in water (transverse mode)

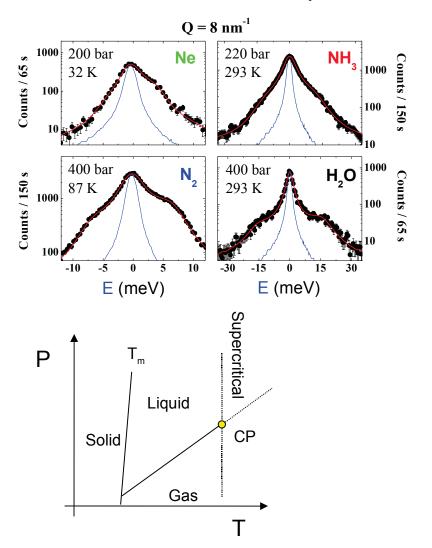


Observability of transverse modes (L-T coupling) and their propagation occurs at different k's, k* and k**. The former is related with the viscoelstic crossover, the latter probably not. A strong P-T dependence of k** is expected.

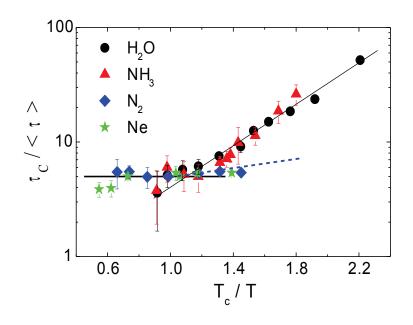


A. Cunsolo et al., submitted to PRB

Liquids vs supercritical fluids

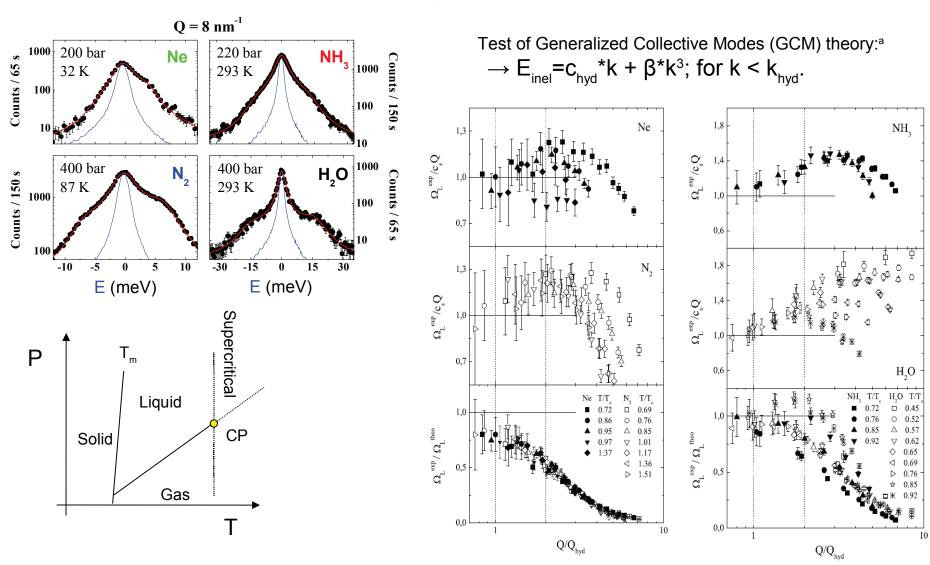


- 1) Positive sound dispersion in all samples; "negative" sound dispersion (c_0 from c_s to c_T adiabatic to isothermal) in some cases.^a
- 2) For $\underline{\mathbf{T}} > \underline{\mathbf{T}}_{\underline{c}}$ relaxation time proportional to mean free time between <u>collisions</u>; for $\underline{\mathbf{T}} < \underline{\mathbf{T}}_{\underline{c}}$ relaxation time proportional to exp{E_a/kBT}, where E_a is the energy of intermolecular bonds.^b



- a) F. Bencivenga et al., Europhys Lett. 75 (2006)
- b) F. bencivenga et al., PRL 98 (2007)

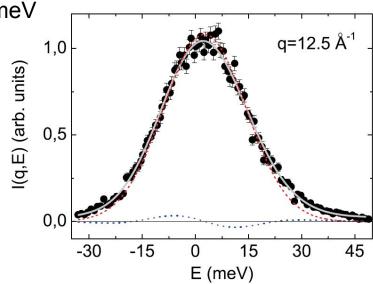
Liquids vs supercritical fluids



F. Bencivenga et al., JCP 136 (2012)

Experimental test of Sachs-Teller theory

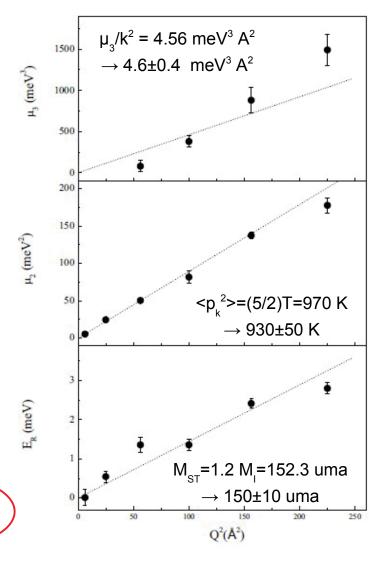
Liquid I_2 (T=388 K); $k = 25 - 150 \text{ nm}^{-1}$ (>> $k^* \sim 7.5 \text{ nm}^{-1}$); $\Delta E = 3 \text{ meV}$



$$S_{IA}(k,E) = (const/\mu_2)*exp{-(E-E_R)^2/2\mu_2}$$

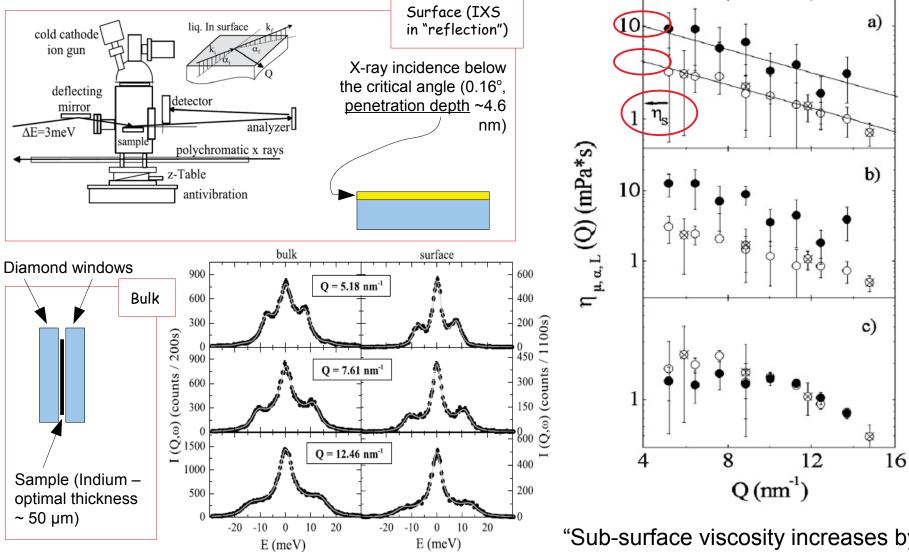
$$*[1-(\mu_3/2\mu_2^2)*(E-E_R)*(1-(E-E_R)^2/3\mu_2)]$$

$$E_{R} = \hbar^{2}k^{2}/2M_{ST}; \mu_{2} = (\hbar^{2}k^{2}/M_{ST}^{2})^{*} < p_{k}^{2} >; \mu_{3} = (\hbar^{4}k^{2}/6M_{ST}^{2})^{*} < \nabla U(r) >$$



a) R.G. Sachs et al., Phys. Rev. 60 (1941)

(sub)surface sensitivity of IXS



H. Reichert et al., PRL 98 (2007)

"Sub-surface viscosity increases by a factor 3 with respect to the bulk

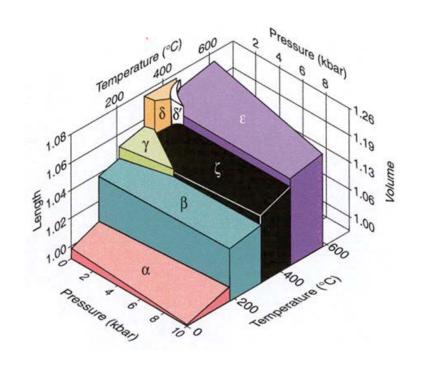
Phonon dispersions in Plutonium: conventional IXS experiment" on a "non-conventional" sample (IXS used for the <u>tight focusing</u>)

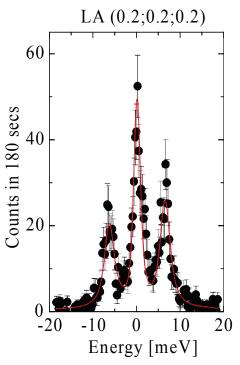
Plutonium is one of the most fascinating and exotic element:

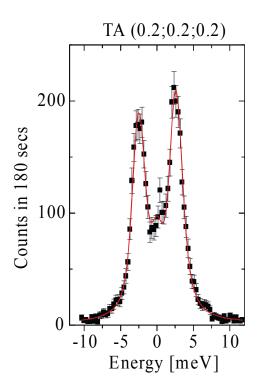
- Multitude of unusual properties
 - Central role of 5f electrons

ID28 at ESRF

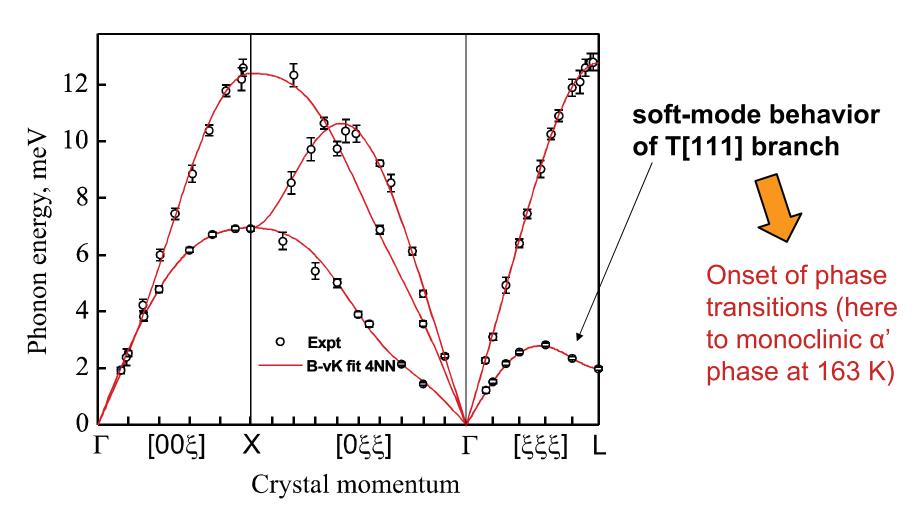
- Beam size: 20 x 60 μm² (HxV)
- Grain size: ~ 80 µm²
- On-line diffraction analysis







Phonon dispersions in plutonium



• Born-von Karman force constant model fit (fourth nearest neighbors)

Phonon dispersions in plutonium

Close to Γ -point: $E = Vq/\hbar$

$$V_1[100] = (C_{11}/\rho)^{1/2}$$

$$V_T[100] = (C_{44}/\rho)^{1/2}$$

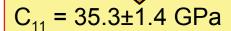
$$V_L[110] = ([C_{11} + C_{12} + 2C_{44}]/\rho)^{1/2}$$

$$V_{T1}[110] = ([C_{11} - C_{12}]/2\rho)^{1/2}$$

$$V_{T2}[110] = (C_{44}/\rho)^{1/2}$$

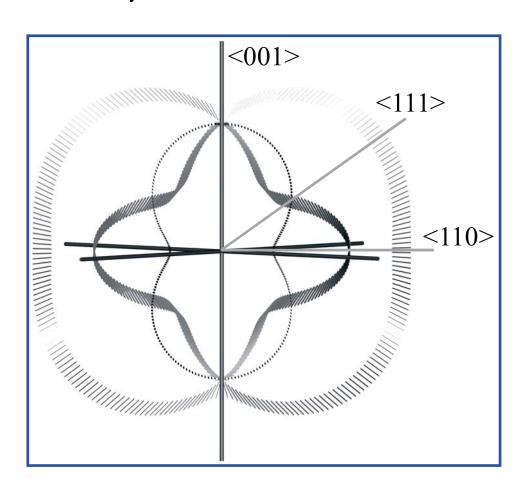
$$V_L[111] = [C_{11} + 2C_{12} + 4C_{44}]/3\rho)^{1/2}$$

$$V_T[111] = ([C_{11}-C_{12}+C_{44}]/3\rho)^{1/2}$$



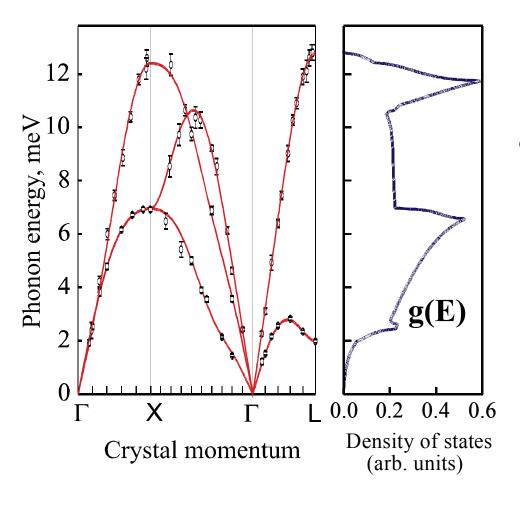
$$C_{12} = 25.5 \pm 1.5$$
 GPa

$$C_{44} = 30.5 \pm 1.1 \text{ GPa}$$



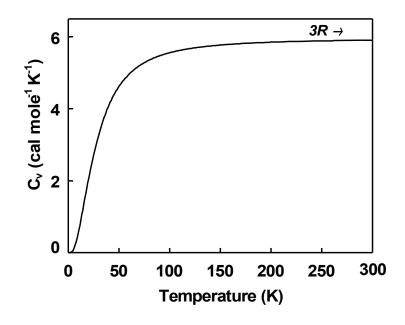
highest elastic anisotropy of all known fcc metals

Phonon dispersions in plutonium



Specific heat:

$$C_v = 3Nk_B \int_0^{E_{\text{max}}} \left(\frac{E}{k_B T}\right)^2 \frac{\exp(E/k_B T)g(E)dE}{\left(\exp(E/k_B T) - 1\right)^2}$$

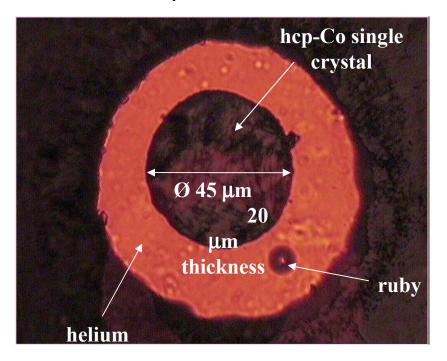


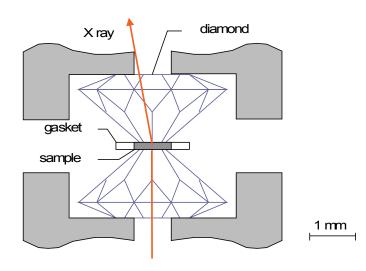
Born-von Karman fit

Elasticity at high pressure (small focus)

Elasticity of hcp-metals under very high pressure (up to 1 Mbar):

- Geophysical interest (Earth core)
- DAC sample environment + IXS





hcp-structure:

5 independent elastic moduli

$$\mathbf{V}_{L}[001] = (C_{33}/\rho)^{1/2}$$

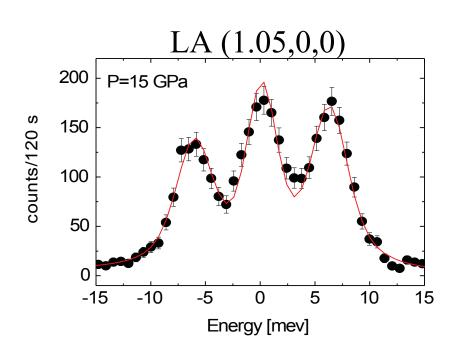
$$\mathbf{V}_{L}[100] = (C_{11}/\rho)^{1/2}$$

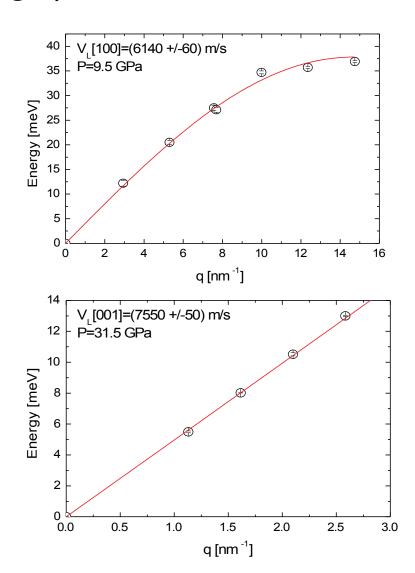
$$\mathbf{V}_{T1}[110] = ([C_{11} - C_{12}]/2\rho)^{1/2}$$

$$\mathbf{V}_{T2}[110] = (C_{44}/\rho)^{1/2}$$

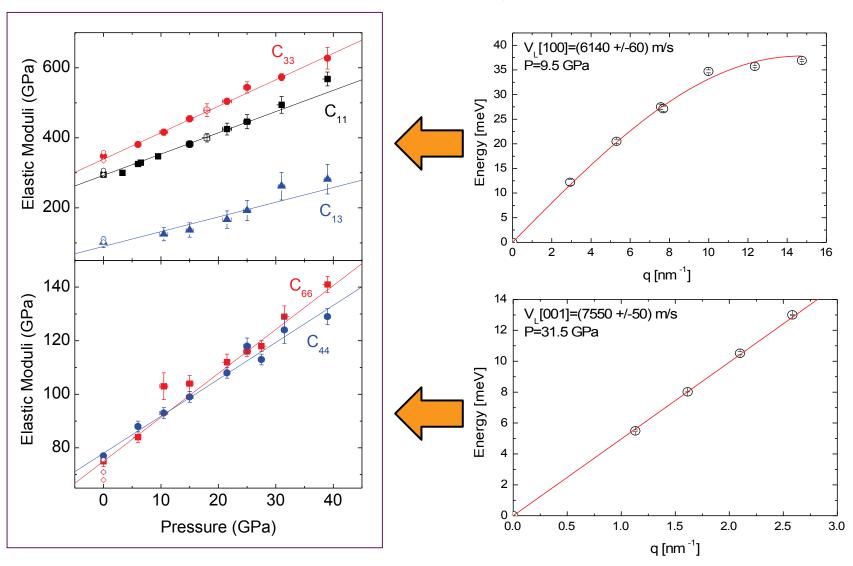
$$\mathbf{V}_{QL}[101] = f(C_{ij},\rho) \rightarrow C_{13}$$

Elasticity at high pressure

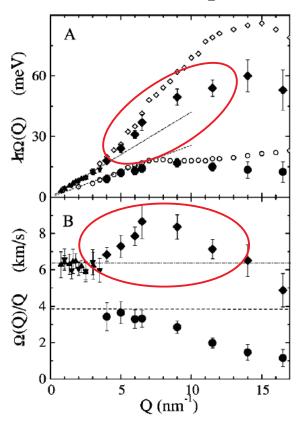


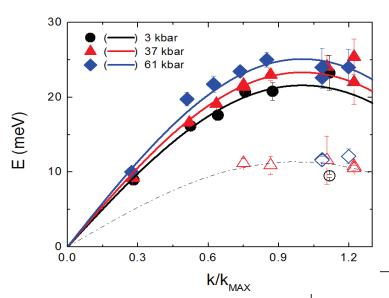


Elasticity at high pressure

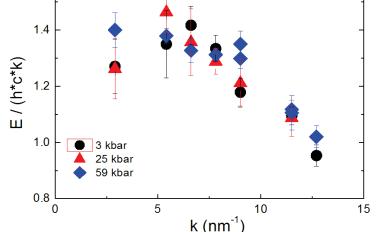


Glassy GeO2 under pressure (kinematic contraints + tigth focus)





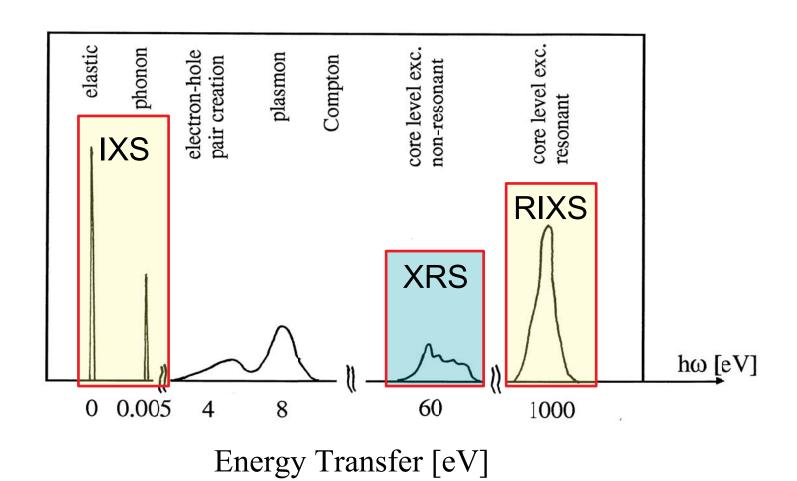
No "anomalies" observed in the crystalline phase; positive dispersion in the glassy phase (weak Pdependence). Structural transition in glassy GeO_2 at P=0-7 GPa (coordination from 4 to > 10 GPa)



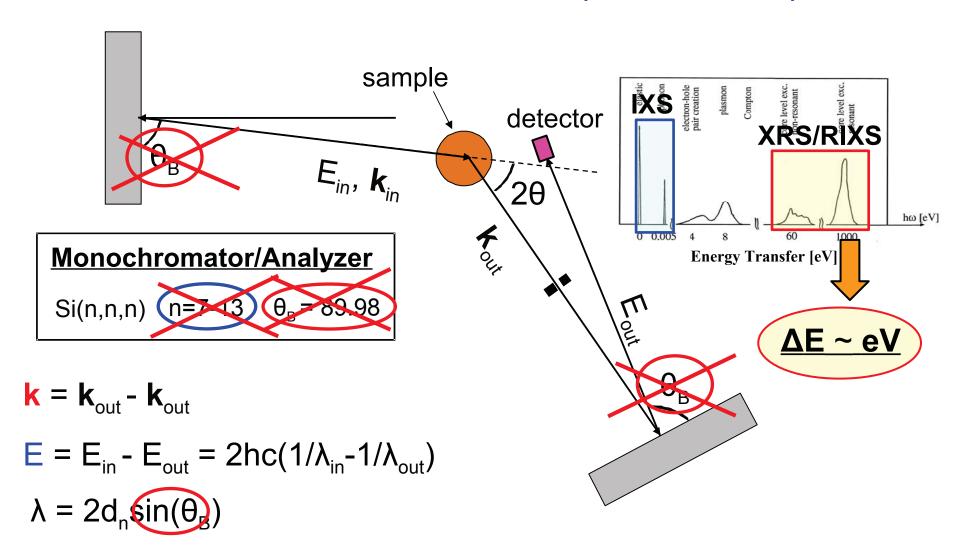
Positive sound dispersion in amorphous **solids** (SiO₂)^a:

- → Also observed in GeO₂ and GeSe₂ (by IXS and INS)
- → Predicted by MD simulations for "harmonic glasses" b
- → Related to anharmonicity or structural disorder?

X-ray Raman Scattering (XRS)

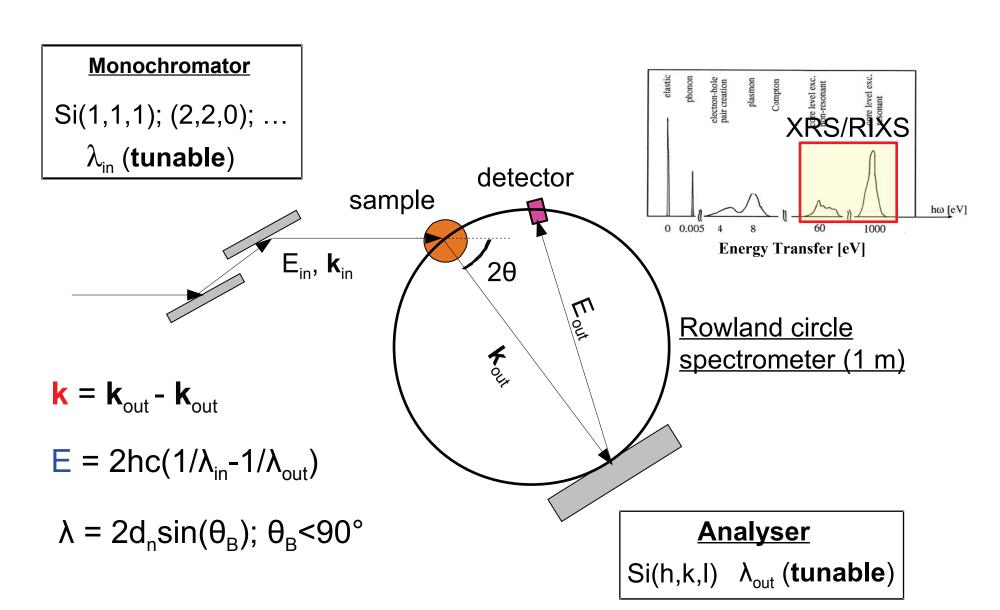


Basic instrumentation (XRS/RIXS)

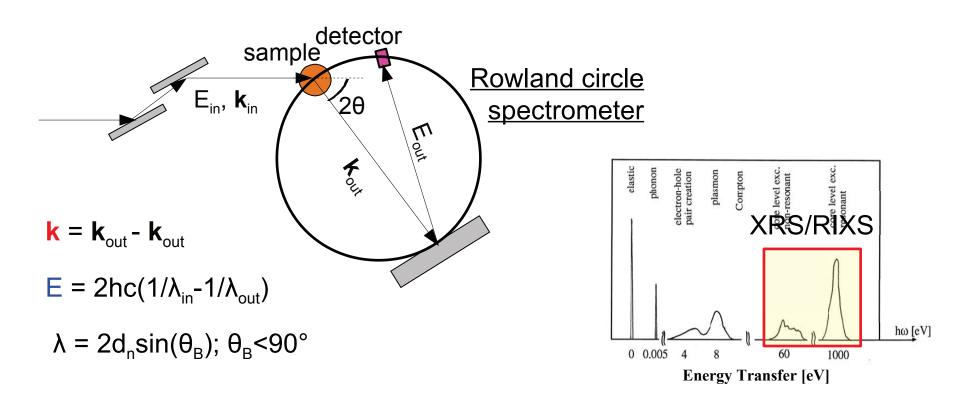


 $\frac{\text{backseattering}}{\text{backseattering}} + \frac{\text{high order reflections}}{\text{backseattering}} = \frac{\Delta E}{\text{meV}}$

Basic instrumentation (XRS/RIXS)



Basic instrumentation (XRS/RIXS)



Scanning strategy

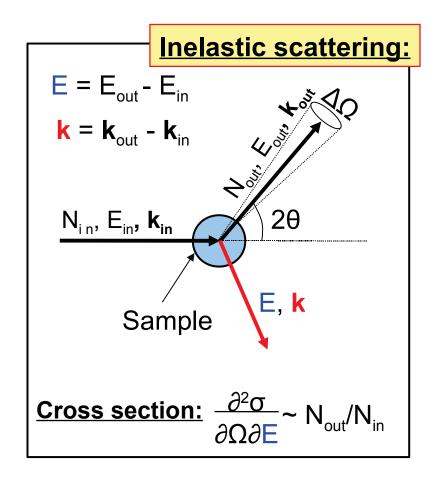
- 1. E_{out} fixed, scanning E_{in} IXS, XRS, RIXS
- 2. E_{in} fixed, scanning E_{out} (rotating crystal and follow with the detector) RIXS
- 3. Scanning E_{in} and E_{out} keeping E constant RIXS

$$H_{int} = (e/m_e c) \sum_j [(e/2c) \mathbf{A}_j \cdot \mathbf{A}_j + \mathbf{A}_j \cdot \mathbf{p}_j]$$

A: vector potential of electromagnetic field

P: momentum operator of the electrons

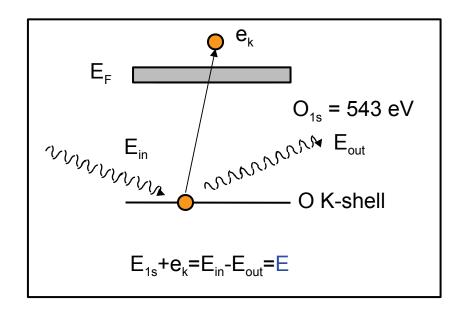
j: summation over all electrons of the system

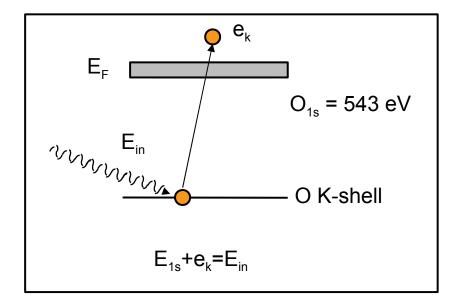


A-A → non-resonant scattering (example: IXS)

A⋅**p** → resonant scattering, absorption followed by emission

$$\frac{\partial^2 \sigma}{\partial \Omega \partial E} = r_0^2 (\mathbf{\epsilon}_{in} \cdot \mathbf{\epsilon}_{out})^2 (\mathbf{k}_{in} / \mathbf{k}_{out}) \sum_{i} P_i |\langle \mathbf{I} | \exp\{i \mathbf{k} \cdot \mathbf{r}_j\} | F \rangle |^2 \delta(E - E_F + E_I)$$





X-ray absorption cross section (dipolar approximation):

$$\frac{\partial \sigma}{\partial E_{in}} = 4\pi^2 \alpha E_{in} \sum_{l} |P_{l}| < ||\mathbf{\epsilon}_{in} \cdot \mathbf{r}_{j}|| + ||\mathbf{\epsilon}_{in} \cdot \mathbf{r}_{j}||$$

Non resonant IXS cross section:
$$\frac{\partial^2 \sigma}{\partial \Omega \partial E} = \mathbf{r}_0^2 (\mathbf{\epsilon}_{\text{in}} \cdot \mathbf{\epsilon}_{\text{out}})^2 (\mathbf{k}_{\text{in}}/\mathbf{k}_{\text{out}}) \sum_{i} P_i |\mathbf{r}_i| < 1 \Rightarrow e^{i\mathbf{k} \cdot \mathbf{r}_i} < 1 \Rightarrow e^{i\mathbf{k} \cdot \mathbf{r}_i} < 1 \Rightarrow e^{i\mathbf{k} \cdot \mathbf{r}_i}$$

 $\mathbf{k} \cdot \mathbf{r}_{j} << 1 \rightarrow \underline{\text{Dipolar regime}}$: identical to photon absorption, where:

- i)The momentum transfer (\mathbf{k}) plays the role of the photon polarization vector ($\mathbf{\epsilon}_{\text{in}}$)
- ii)The energy transfer (E) plays the role of the incident energy (E_{in})

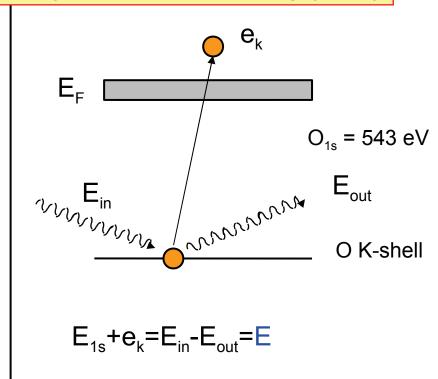
X-ray absorption cross section (dipolar approximation):

$$\frac{\partial \sigma}{\partial E_{in}} = 4\pi^2 \alpha E_{in} \sum_{l} P_{l} |\langle l| \boldsymbol{\epsilon}_{in} \cdot \boldsymbol{r}_{j} |F\rangle|^2 \delta(E_{in} - E_{F} + E_{I})$$

Non resonant IXS cross section:

$$\frac{\partial^2 \sigma}{\partial \Omega \partial F} = r_0^2 (\mathbf{\epsilon}_{in} \cdot \mathbf{\epsilon}_{out})^2 (\mathbf{k}_{in} / \mathbf{k}_{out}) \sum_{l} P_{l} |\langle I | \exp\{i \mathbf{k} \cdot \mathbf{r}_{j}\} |F\rangle|^2 \delta(E - E_F + E_I)$$

X-ray Raman Scattering (XRS)

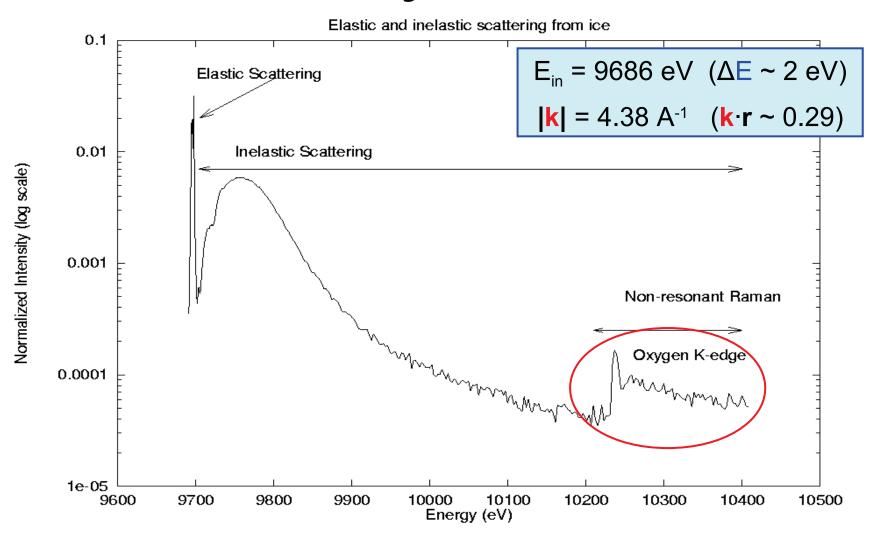


Motivation: element-selective probe for local atomic structure

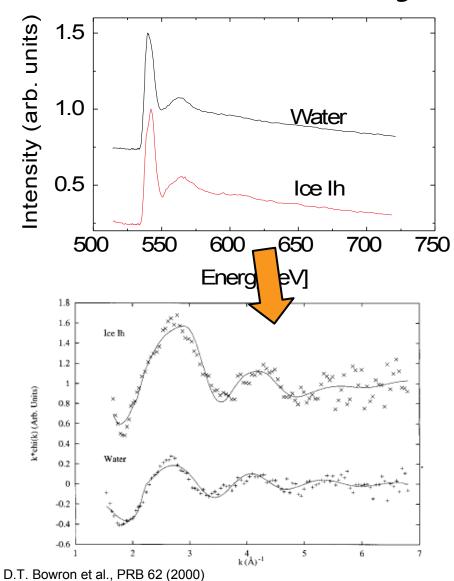
XRS is alternative to:

- Neutron scattering (with isotopic substitution)
- X-ray (anomalous) scattering
- XANES and EXAFS

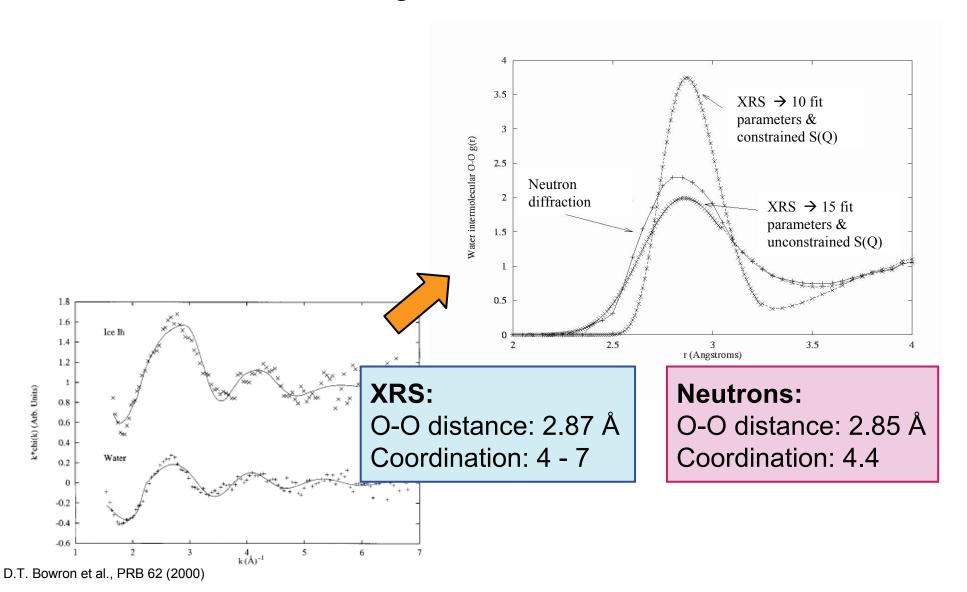
XRS from O K-edge in water and ice



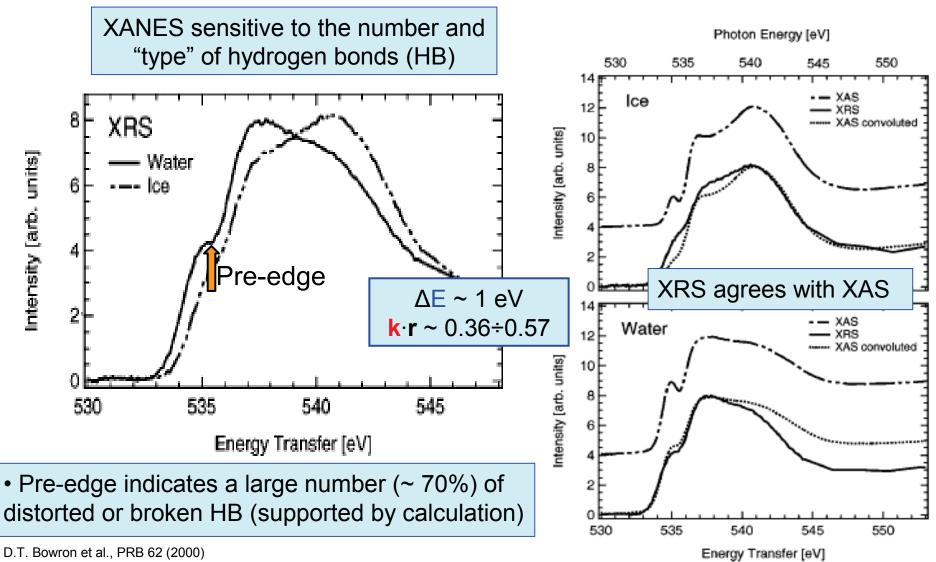
XRS from O K-edge in water and ice (EXAFS)



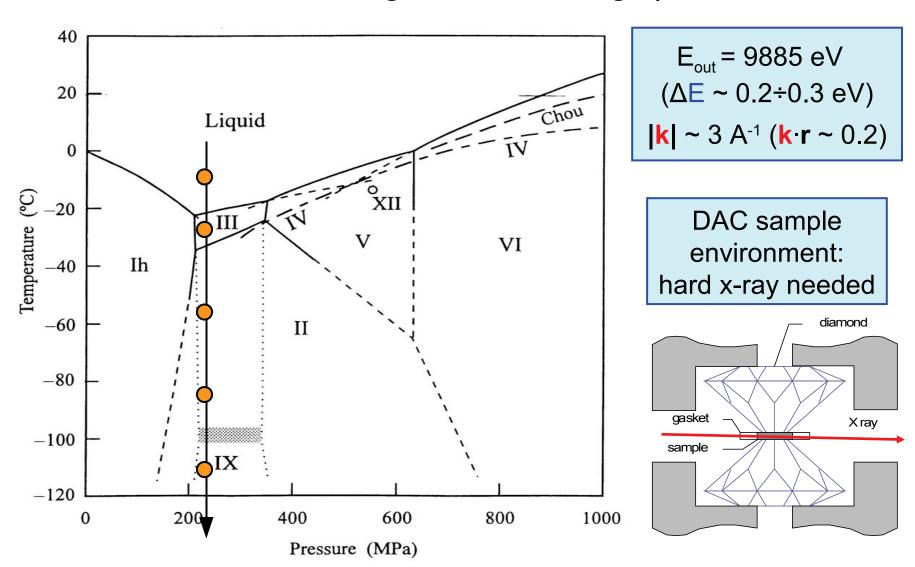
XRS from O K-edge in water and ice (EXAFS)



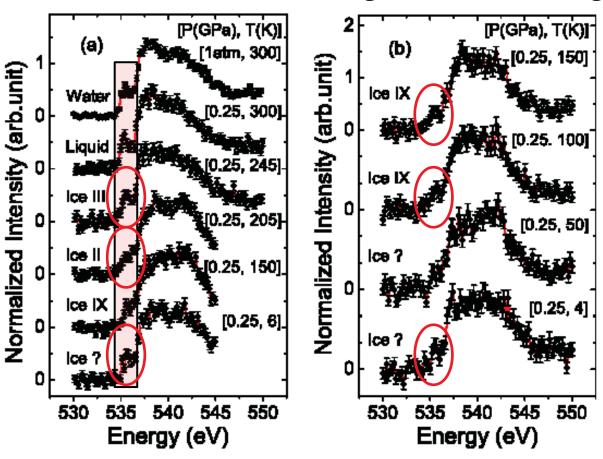
XRS from O K-edge in water and ice (XANES)



XRS from O K-edge in ice under high pressure



XRS from O K-edge in ice under high pressure



- Slight increase of pre-edge with P (<u>larger HB distortion</u>)
- Increasing order of HB from liquid → Ice III (tetrahedral) → Ice II / IX
- New pre-edge increase @ low-T: new Ice phase?

Observation of spectral changes:

Need of much better statistics and theory to extract quantitative information

XRS in summary

Soft x-ray spectroscopy in the hard x-ray regime

Advantages

"simpler" sample environment (high pressure/temperature, etc...) + bulk sensitive

→ indicated for studying (bulk)

Oxygen and Carbon

Drawbacks

• "weak probe"
(practically limited to Z < 14)
→ limited quality for structural analysis (EXAFS), reasonable quality in the XANES region

Exploit information in the near-edge region