

2332-24

School on Synchrotron and FEL Based Methods and their Multi-Disciplinary Applications

19 - 30 March 2012

Coherent Diffractive Imaging with FELs: outrunning radiation damage

Henry Chapman DESY and University of Hamburg Germany Coherent Diffractive Imaging with FELs: outrunning radiation damage

Henry Chapman Center for Free-Electron Laser Science DESY and University of Hamburg

henry.chapman@desy.de

Trieste School, March 2012

Free electron lasers open up new frontiers in X-ray science

Unique properties

Ultrashort pulses (20 - 200 fs)

Intense pulses (10¹² - 10¹³ photons/pulse)

X-ray radiation (50eV - 12keV) (32nm - 1Å)

High peak power (200 µJ/pulse to 4 mJ/pulse in 25 fs)

Coherence ('Monochromatic', transverse coherence)

Repetition rate: 120 Hz (LCLS) 27 kHz (XFEL)

Unique capabilities

- Beating radiation damage
- Freeze atomic motion
- Freeze electron states
- Single-shot studies (Variation in behaviour, not just the average)
- Penetrating power
- Spatial resolution
- Inner shell atomic physics
- New regimes in X-ray matter interaction
- X-ray diffraction (Coherent imaging, XPCS)
 Diffraction limited focus

Repeat experiment millions of times

Unique applications

- Biological imaging (beating radiation damage)
- Ultrafast structural studies (where are the atoms?)
- Ultrafast dynamics (sub-ps density changes)
- Femtochemistry (valence electrons)
- Magnetism (electron spin)
- Ideal probe for:
 - Biomolecules
 - Electron dynamics
 - Molecular physics
 - Materials dynamics
 - Melting and recrystal.
 - Nucleation
 - Shocked materials
 - Solid state physics

"Diffraction before destruction" imaging introduces a new sample into the beam on each FEL pulse

FLASH Experiments:

LLNL: A. Barty, M. J. Bogan, M. Frank, S. P. Hau-Riege, S. Marchesini, B. W. Woods, S. Bajt, W. H. Benner, R. London, R. W. Lee, E. Spiller, A. Szoke

<u>U. Uppsala</u>: J. Hajdu, S. Boutet, M. Bergh, C. Caleman, G. Huldt, M. M. Seibert, F. R. N. C. Maia, N. Timneanu, D. van der Spoel, M. Svenda, I. Andersson, J. Andreasson, D. Westphal, B. Iwan
 <u>DESY</u>: E. Plonjes, M. Kuhlmann, R. Treusch, S. Dusterer, T. Tschentscher, J. R. Schneider
 <u>TU Berlin</u>: T. Moller, C. Bostedt, M. Hoener

LCLS Experiments:

DESY: A. Barty, T. White, A. Aquila, J. Schulz, D. P. DePonte, A. Martin, K. Nass, F. Stellato, M. Liang, M. Barthelmess, C. Caleman, F. Wang, S. Bajt, L. Gumprecht, S. Stern, L. Galli, K. Beyerlein, G. Potdevin, H. Graafsma

Arizona State University: J. C. H. Spence, P. Fromme, R. Fromme, M. S. Hunter, R. A. Kirian, U. Weierstall, R. B. Doak, K. E. Schmidt, X. Wang, I. Grotjohann

<u>U. Uppsala</u>: F. R. N. C. Maia, J. Hajdu, N. Timneanu, M. M. Seibert, J. Andreasson, A. Rocker, B. Iwan, D. Westphal, O. Jonsson, M. Svenda, I. Andersson

Max Planck Society:I. Schlichting, L. Lomb, R. L. Shoeman, S. Epp, R. Hartmann, D. Rolles, A.Rudenko, L. Foucar, N. Kimmel, G. Weidenspointner, P. Holl, B. Rudek, B. Erk, C. Schmidt, A. Homke, C.Reich, D. Pietschner, L. Struder, G. Hauser, H. Gorke, J. Ullrich, S. Herrmann, G. Schaller, F. Schopper,H. Soltau, K.-U. Kuhnel, R. Andritschke, C. Schroter, F. Krasniqi, M. Bott, T. R. M. Barends, H. HirsemannSLAC:S. Boutet, M. Bogan, J. Krzywinski, C. Bostedt, M. Messerschmidt, J. Bozek, C. Hampton, R.Sierra, D. Starodub, G. J. WilliamsLLNL;S. Hau-Riege, M. FrankLBNL:J. M. Holton, S. MarchesiniGotheburg:R. Neutze

TU Berlin: S. Schorb, D. Rupp, M. Adolph, T. Gorkhover

U. Hamburg C. Betzel, L. Redecke U. Tübingen: M. Duszenko, R.Koopman, K. Cupelli

Images are synthesized from the Fourier amplitudes

Phase retrieval can be accomplished with iterative transform algorithms

We have reconstructed a 3D X-ray image of a noncrystalline object at 10 nm resolution

Coherent X-ray diffraction data $\lambda = 1.6$ nm, from a sample of 50nm gold spheres arranged on a pyramid on a *synchrotron*

Complete image reconstruction achieved, without any prior knowledge, using our "**shrinkwrap**" algorithm, **parallelized** for 3D on 32-CPU cluster. Resolution = 10 nm

Space-grown Insulin crystals NASA

The weak X-ray scattering cross section requires amplification from the crystal

signal is proportional to the number of unit cells

High radiation dose causes changes in molecular structure

Tolerable dose in cryogenicallycooled crystals is 30 MGy

1 Gy = 1 J/kg

30 MGy ≈ 0.3 eV / Da ≈ 0.02 eV / atom

(about one ionization per 20 amino-acid residues)

 $\approx 6\times 10^{10} \ ph/\mu m^2$

Elspeth Garman, U. Oxford micrograph of crystal after exposing to x-rays and warming up

X-ray free-electron lasers may enable atomicresolution imaging of biological macromolecules

R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, J. Hajdu, Nature 406 (2000)

X-ray FELs are a billion times brighter than synchrotrons

Atomic-resolution diffraction from sparticles should be possible with 10¹

とないできた。 しきないたけがく

3 Å resolution

X-ray free-electron lasers may enable atomicresolution imaging of biological macromolecules

FLASH (the FEL in Hamburg) Opened for users in 2005

DESY

First EUV-FEL experiments show that pulses are indeed destructive

Plasma forms, layers ablate Electron temperature reaches 28 eV (300,000 K)

First EUV-FEL experiments show that structural information can be obtained before destruction

Reflectivity unchanged Multilayer *d* spacing not changed by more than 0.3 nm

Our diffraction camera can measure forward scattering close to the direct soft-X-ray FEL

30° to 60° gradient,

"Diffraction before destruction" was demonstrated with soft X-rays at DESY's FLASH FEL

"Diffraction before destruction" was demonstrated with soft X-rays at DESY's FLASH FEL

We perform ab initio image reconstruction with our "Shrinkwrap" algorithm

S. Marchesini et al. Phys Rev B 68 140101 (2003)

We model the response of matter illuminated by intense X-ray pulses as a hot plasma

S. Hau-Riege et al, Phys Rev E **69**, 051906 (2004)

Hydrodynamic continuum model for the atomic motion and the ionization processes:

- Allows for trapping and secondary effects (such as inverse Bremsstralung, 3-body recombination)
- Damage is dominated by ionization at short times

We model the response of matter illuminated by intense X-ray pulses as a hot plasma

(k,l) =(# K-shell, # L-shell) electrons black = neutral carbon blue = valence ionization red = inner shell ionization

Hydrodynamic continuum model for the atomic motion and the ionization processes:

- Allows for trapping and secondary effects (such as inverse Bremsstralung, 3-body recombination)
- Damage is dominated by ionization at short times

XFEL diffraction of molecules and clusters is modified (damaged) by photoionization and motion of atoms

S. Hau-Riege et al, Phys Rev E 69, 051906 (2004)

Our VUV hydrodynamic code shows that latex spheres start exploding in ~ 2 ps

We invented a new method called femtosecond time-delay holography

First demonstration of time-delay holography with 3 fs time resolution indicates the particle explosion

Single shot ultrafast time-delay X-ray hologram, with 300 fs delay

The "dusty mirror" experiment

The explosion is in good agreement with our hydrodynamic model

The structure factor narrows, showing the particle exploding

We interferometrically measure the change in optical density of the particle at short delays

We expect that the tamper reduces the explosion of the particle

The tamper reduces the explosion

reconstructions: Sebastien Boutet

Single-particle FEL diffraction of "on-the-fly" particles has been demonstrated for the first

M.J. Bogan et al., Nano Letters 8, 310 (2008)

The absence of a substrate gives clean patterns free of aliased scattering sources and plasma radiation

We have performed the first X-ray imaging of free-falling unstained live biological cells

Single shot ~10 fs diffraction pattern of a picoplankton organism. $\lambda = 13.5$ nm

This cell was injected into vacuum from solution, and shot through the beam at 100 m/s

J. Hajdu, I. Andersson, M. Svenda, M. Seibert (Uppsala), S. Boutet (SLAC) M. Bogan, H. Benner, U. Rohner, H. Chapman (LLNL)

We performed ultrafast coherent X-ray diffraction to study ablation of materials

A. Barty et al., Nature Photonics 2 415 (2008)

With Klaus Sokolowski-Tinten (Essen) and Andrea Cavalleri (Oxford)

Patterns can be cross-correlated to reveal the dynamics of the structure

LCLS is the world's first hard X-ray FEL

First operations in 2009

Photon energy: Pulse energy:	I.8 keV 2 mJ	(6.8 Å wavelength) (7×10 ¹² photons)		Damping Rings	R
Pulse duration:	40 fs to	300 fs			
X-ray focus:	10 μm²	(10 ¹⁷ VV/cm ²)	Main Linac	LCLS Injector	
Dose to sample:	3 GGy	-		The second second	AL BRIDE MELINA
PEP-II Ne	LCLS ear Hall	Station B NLCTA LCLS Station	SPEAR3	Guest House	
LCLS Far Hall	CEH	BABAR		AL ACCELERATOR LAB	ORATORY

We used the same strategy as at FLASH to monitor sample destruction during the pulse

FLASH: Wavelength 100 Å Structures: 100 Å to microns

LCLS: Wavelength 6.8 Å Structures: 6 Å to microns

Submicron droplet sources and liquid jet sources have been developed for LCLS and FLASH

Nanocrystallography is carried out in a flowing water microjet

Single pulse diffraction from Photosystem I nanocrystals at LCLS

The crystals are sub-micron size

We can sum patterns to create a virtual powder pattern

Lysozyme nanocrystals 2 keV

We have indexed the patterns

Molecular replacement reconstructs the 7.4Å structure at 2 keV photon energy

Bragg peaks are observed even with 300 fs pulses

A crystal only gives Bragg diffraction when it is a crystal!

We see a degradation of the sample at longer pulse durations

Barty et al, Nature Physics 6, 35 (2012)

Only the first 30 fs contributes to the diffraction

In our experiments we average over many different but almost-identical objects

The diffusion of ions in a plasma is calculated using a hydrodynamic plasma code

Barty et al. Nature Photon 6, 35-40 (2012)

We have explored the explosion dynamics up to almost I GGy/fs

The diffusion of ions in a plasma is calculated using a hydrodynamic plasma code

Only the first 30 fs contributes to the diffraction

The explosion accelerates during the pulse

Carl Caleman & Nic Timneanu

- ☆ Don't waste dose on pre-alignment
- ☆ Use the very first photons hitting the sample, when the sample is still pristine
- Combine lots of independent measurements. We work at minimal dose per crystal (by relinquishing the goal of efficient peak integration and scaling)
- Software now available to crunch through hundreds of Terabytes of data: http://www.desy.de/~twhite/crystfel/index.html

Summary

☆ "Diffraction before destruction" holds to 1.8 Å resolution

× No effect of radiation damage is yet observed in refined protein structures

☆ Isotropic atomic displacements terminate the diffraction

- ☆ Specific damage could manifest as an expansion around heavy atoms, which are local centers of high charge. This may be gated by isotropic motion.
- Ionization should enhance anomalous signals, giving a route to phasing
- ☆ The key metric for this mode of imaging is Xray *intensity* (photons per unit area per unit time). The optimal X-ray FEL source is that of highest pulse power

