

2333-5

Workshop on Science Applications of GNSS in Developing Countries (11-27 April), followed by the: Seminar on Development and Use of the Ionospheric NeQuick Model (30 April-1 May)

11 April - 1 May, 2012

Introduction to Satellite Navigation

DOHERTY Patricia

Institute for Scientific Research, Boston College St. Clement's Hall, 140 Commonwealth Avenue CHESTNUT HILL MA 02467-3862 Massachusetts U.S.A.

GPS Block 11F Satellite

Introduction to Satellite Navigation using GNSS

Patricia H. Doherty Boston College

Workshop on Science Applications of GNSS in Developing Countries 11 April 2012 ----- ICTP, Trieste, Italy

Outline

- Basics of Satellite Navigation
 - GNSS Systems
 - GPS System, Measurements, Performance
- Augmentation Systems
 - Differential GPS (DGPS)
 - Space Based Augmentation Systems (SBAS)
 - Ground Based Augmentation Systems (GBAS)
- Practical Applications
- Scientific Exploration
 - Ionospheric Studies
 - Space Weather
- Summary

GNSS Systems Compatible and Interoperable

Galileo (EU)

GLONASS

Beidou/COMPASS (China)

Global Positioning System (GPS)

The Global Positioning System (GPS)

Worldwide Radio-Navigation System

•Developed and maintained by U.S. DoD

•Original intended use was military

•Early-on civilian use was enabled

•Provide 3D Positioning, Velocity and Time

•24hrs/day,7 days/wk, everywhere!

•GPS Consists of Three Segments

•Space Segment

•Control Segment

•User Segment

Based on Satellite Ranging

•Users determine position by measuring the distance from a group of satellites in space

GPS Space Segment

The Global Positioning System (GPS)

Worldwide Radio-Navigation System

•Developed and maintained by U.S. DoD

•Original intended use was military

•Early-on civilian use was enabled

Provide 3D Positioning, Velocity and Time

•24hrs/day,7 days/wk, everywhere!

•GPS Consists of Three Segments

•Space Segment

•Control Segment

•User Segment

Based on Satellite Ranging

•Users determine position by measuring the distance from a group of satellites in space

User Segment: You and 200 Million other people

GPS Control Segment

The Global Positioning System (GPS)

Worldwide Radio-Navigation System

- Developed and maintained by U.S. DoD
- •Original intended use was military
- •Early-on civilian use was enabled

Provide 3D Positioning, Velocity and Time

•24hrs/day,7 days/wk, everywhere!

•GPS Consists of Three Segments

- Space Segment
- Control Segment
- User Segment

Based on Satellite Ranging

•Users determine position by measuring the distance from a group of satellites in space

6 Monitor Stations **1** Master Control Station **3 Ground Antennas**

How does it work? Trilateration by Satellite

Sources of GPS Errors

- Receiver clock errors
- Signal multipath
- Orbital errors
- Number of satellites visible
- Satellite geometry
- Tropospheric and lonospheric delays

Typical Standard Positioning Service (SPS) GPS position accuracy:

~10-15 meters (mostly due to the ionosphere)

 Blocked Signal
 2
 Multipath Error
 3
 Correct Signal

 Cood DOP
 Poor HDOP
 Poor VDOP

 Output
 Output
 Output
 Output

(www.garmin.com)

Two Levels of GPS Service

Precise Positioning Service (PPS)

- Authorized users ONLY
- U. S. and Allied military
- Requires cryptographic equipment, specially equipped receivers
- Accurate to 21 meters 95% of time

Standard Positioning Service (SPS)

- Available to all users
- Accuracy degraded by Selective Availability until May 2000
 - Horizontal accuracies ~100 m
- Current accuracy similar to PPS (≤15m)
 - Less for Augmented GPS: DGPS,SBAS,GBAS

GPS Augmentations

• Why augment?

•For better accuracy: Mitigate measurement errors

•For robustness: Mitigate effects of

•RFI (intentional or not)

•Signal attenuation due to blockage (foliage, building, or temporary loss of signal

• How augment?

•Transmit corrections for errors that are correlated spatially and temporally

Differential GPS

Wide Area Differential GPS

•Space Based Augmentation Systems (SBAS)

Local Area Augmentation Systems (GBAS)

•Assist GPS receiver with complementary technologies (e.g. intertial), signals of opportunity (eLoran), or offloading some functions (to a cell tower in E911)

Differential GPS (DGPS)

- Uses 2 receivers
 - Reference receiver
 - Remote/roving receiver
- Reference receiver calculates the errors in the received GPS signals
- Transmits corrections to rover receiver
 - via radio link or mobile phone
- Public and private reference beacon stations are available
 - US Nationwide NDGPS
 - US Maritime MDGPS
 - 40 other countries have similar systems

DIFFERENTIAL GPS POSITIONING

DGPS Accuracy: ~1–3 m Degrades with distance

Real Time Kinematic

Satellite Based Augmentation Systems (SBAS)

Designed to improve GPS accuracy, availability and integrity for civil aviation.

• Future primary means of civil air navigation

- For all aircraft in all phases of flight
 - Non-Precision Approach (NPA) en-route
 - Vertically Guided Approach (LPV) runway

First of many worldwide systems – EGNOS, MSAS, GAGAN

Current Infrastructure:

- •38 Reference Stations
- •3 Master Stations
- 4 Uplink stations
- •2 Communications Satellites

WAAS message provides:

•corrections for satellite orbits, time and the ionosphere

•estimates of the uncertainty of those corrections

WAAS Accuracy: ~1–3 m

Satellite Based Augmentation Systems (SBAS)

(ICAO is committed to transition to satellite navigation)

Systems in equatorial regions will face more challenging ionospheric dynamics.

EGNOS – The European Satellite Augmentation System – 2009 MSAS – The Asia Pacific Satellite Augmentation System – 2007 CSTB – South American Satellite Augmentation System - TBD GAGAN – Indian Satellite Augmentation System – TBD

WAAS operational in 2003

SNAS – Chinese Satellite Navigation Augmentation System - TBD

Ground Based Augmentation System (GBAS)

- Provides local airport coverage: ~20-30 mile radius
- 4 Receivers; 1 VHF radio data link from a ground-based transmitter
- Precision Approach for CAT- I, II, III
- Procedures for Arrival and Departure
- Multiple runway coverage at an airport terminal area
- Demonstrated accuracy is < 1 meter

Local Area Augmentation System

LAAS

LAAS/GBAS International Efforts

Typical GPS Ranging Errors

Error Source	SPS GPS	Differential GPS	RTK
User Range Errors			
System Errors Ephemeris Data Satellite Clocks	0.4 -0.5 m 1-1.2m	Removed Removed	Removed Removed
Atmospheric Errors Ionosphere Troposphere	0.5 – 5m 0.2 -0.7m	0.2 – 2.0m Removed	0.000501m Removed
Total Typical URE Errors	1.7 – 7.0m	0.2 – 2.0m	0.0005-0.01m
User Equipment Errors			
Receiver	0.1 – 3m	0.1 – 3m	Almost All Removed
Multipath	0-10m	0-10m	Greatly Reduced

Applications

Annual Commerce in GPS Products and Services > \$10billion >200 Million Users

Precision Approach & Landing (SBAS&GBAS)

Improves the accuracy, integrity and availability of GNSS

Efficiency

•More direct en-route paths

- •Greater runway availability
- •Precision Approach for all users

•Cost

- Low cost avionics
- •Reduction of ground based navigation aides

Safety

- •Vertical Guidance for all phases of flight
 - takeoff, en-route to precision approach
- •Available at all runway poor visibility
- Situational Awareness

GARMIN Aircraft Receiver

DC9, lost in fog, blunders onto an active runway and is struck by departing 727. 8 dead, 22 injured

Exxon Valdez, March 24, 1989 Ran Aground on Bligh's Reef

2008, Institute of Navigation, Per Enge

Exxon Valdez (continued)

2008, Institute of Navigation, Per Enge

Smart Phones

- Smart Phones (cell phone + PDA)
 - GPS used for emergency calls
 - Emergency location
 - Applications include:
 - Basic maps
 - Turn by turn directions
 - \$200 \$400
- Cell Phones with GPS embedded
 Mostly for E911 calls only

Scientific Exploration with GNSS

- Seismic monitoring & prediction
- Volcano monitoring
- Climate change
- •Gravity fields
- Atmospheric science
 - ground water vapor
 - the ionosphere
 - space weather

Ionospheric Effects on GPS

•TEC

Induces Range Errors

•Highly variable with location, time, season, magnetic and solar activity

Scintillation

 Induces rapid changes in amplitude and phase of incoming signal

•Can induce cycle slips and loss of lock that degrade performance

The LISN Network using >75 GPS Receivers

GNSS for Scientific Research in Africa

Africa has a most challenging ionosphere :

Strong latitudinal gradients

Within northern and southern anomaly peaks

Covers a wide longitudinal region

Depletions and scintillation are potentially the worst conditions worldwide

Ionospheric Monitors in Africa

□ 13 units of MAGDAS

7 units of GPS including SCINDA,

□4 units of AWESOME

20 units of SID monitors

data obtained from these facilities are being used to improve our understanding of space weather as it affects the performance of GNSS

Additional monitors: 3 units GPS from BC – More planned under ICTP/BC partnership lonosondes planned

Based on presentation by Dr. Rabiu Babatunde

Solar Cycle Dependence all effects intensify with increasing solar activity

Simple Summary

GNSS is an enabling technology that can make major contributions to economic growth and societal betterment. It is also a key to scientific exploration.